

OSTAPAL CHROMITE MINES P.O. - KALIAPANI-755047 DIST. JAJPUR, ODISHA, INDIA

OCM/ENV/ 157 /2021

Dtd: 31.05.2021

To

The Joint Director(s)
Ministry of Environment, Forest & Climate Change,
Eastern Regional Office,
Bhubaneswar

Sub.:

Submission of Six-monthly compliance report to the conditions stipulated in the grant

order of Environmental Clearance (EC) pertaining to Ostapal Chromite Mines of

M/s. FACOR LTD.

Ref.:

MoEF EC Letter No.: J-11015/38/2006-IA II(M) dtd.06-12-2006

Dear Sir,

With reference to the captioned subject & cited reference, we are herewith submitting six monthly compliance reports pertaining to Ostapal Chromite Mines of M/s FACOR Ltd for the period from October'2020 to March'2021 for your kind perusal.

The Monthly & quarterly Environmental monitoring data for the period October'2020 to Mar'2021 comprising AAQ, Water, Noise & Soil are enclosed herewith as Annexures. The soft copy of the same is being sent to your good office by email.

This is for your Kind information & necessary action.

Thanking You

Yours faithfully, for FERRO ALLOYS CORPORATION LTD.

MINES MANAGER

Encl.: A/a

Ferro Alloys Corporation Limited

Charge Chrome Plant, D.P. Nagar, Randia - 756 135, Dist. Bhadrak, Odisha, India.

Phone: 06784 240320/240347/240272, Fax: 06784 240626.

E-mail: Facor.corporate@vedanta.co.in | Website: www.facorgroup.in

CIN: L45201OR1955PLC008400

Name of the Project : OSTAPALCHROMITEMINES,M/S.FACORLTD.

Project Code : Mining(Non-Coal)

Clearance Letter No. With date : No.J-11015/38/2006-IA-II(M)dt.06-12- 2006

Period of Compliance Report : October,2020 to March,2021

Specific Condition:

SI. No.	Condition	Compliance Status
1.	All the conditions stipulated by the State Pollution control Board, in their Consent to establish should be effectively implemented.	All the stipulated conditions are being effectively implemented.
2.	Necessary forestry clearance under the Forest (Conservation) Act, 1980 for an area of 4.07 ha forest land shall be obtained before starting mining operation in that area. Till such time mining activities shall be restricted to an area of 64.354 ha for which in principle forestry clearance has been obtained from the Ministry on03.10.2005	This area is left as Safety Zone area for greenbelt around periphery of forest land of M.L. area and mining operations in this area will not be done.
3.	Topsoil should be stacked properly with proper slope at earmarked site(s) with adequate measures and should be used for reclamation and rehabilitation of mined out area.	No topsoil has been generated during the period Oct 2020 to March'2021
4.	Over burden shall be stacked at earmarked dump site(s) only and should not be kept active for long period. The total height of the dump(s) should not exceed 45m in three stages of 15 m each, keeping overall slope of the dumps below 28 °. The proponent shall carry out slope stability study and submit report to the Ministry.	The OB is being dumped at earmarked sites only. The OB dump is not kept active for long period. The present height of the dump is within the limit & over all slope 25 °. In future also the overall slope will be maintained below 28degrees.
	The OB dumps should be scientifically vegetated with suitable native species to prevent erosion and surface run off. In critical areas, use of geo textiles shall be taken for stabilization of the dump. Monitoring and management of rehabilitated areas should continue until the vegetation becomes self - sustaining. Compliance status should be submitted to the Ministry of Environment & Forests on six monthly basis.	The inactive benches are being vegetated by suitable native species and massive grass plantation to prevent erosion & surface runoff. The management of the rehabilitated areas of the dumps has been continuing until the vegetation becomes self-sustaining.
5.	Trace Metals such as Ni,Co,As, and Hg should be analyzed in dust fall and soil samples for at least one year during summer, monsoon and winter seasons. If concentrations of these metals are found below the standards, then with prior approval of MOEF this specific monitoring could be discontinued.	Collection and analysis of dust & soil samples is done, and the test reports are enclosed in Annexure No1 .

6. Catch drains and siltation ponds of appropriate size should be constructed to arrest silt and sediment flows from soil, OB and mineral dumps. The water so collected should be utilized for watering the mine area, roads, plantation etc. The drains should be regularly de -silt ed and maintained properly.

Garland drain (size, gradient and length) shall be constructed for both mine pit & waste dump and

Garland drain (size, gradient and length) shall be constructed for both mine pit & waste dump and sump capacity should be designed keeping 50% safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity should also provide adequate retention period to allow proper settling of silt material.

Storm water return system should be provided. Storm water should not be allowed to go to the effluent treatment plant during high rainfall / super cyclone period. A separate storm water sump for this purpose should be created.

Catch drains around OB dumps and mineral stockyard have already been constructed with siltation ponds at regular intervals to arrest silt and sediments. Whenever required the silts and sediments are being cleaned from catch drains and siltation ponds and maintained regularly. Mine pumped out water is sufficient for dust suppression and plantation purposes. Hence catch drain water is dis-charging outside ML area through upgraded ETP. Hence there is no need for collection of water from catch drains from mine area, roads, plantation etc.

Garland drains of width 2m, depth 1.5m and length 3424 m with gradient have been constructed for maximum discharge of rainfall in the adjoining areas.

There is no chance of flow of storm water into the effluent treatment plant during high rain fall/super cyclone period became the plant is at high reduced level (RL). Hence storm water return system is not required.

7. Dimensions of retaining wall at the toe of OB dumps & benches within the mine to check run -off and siltation should be based on the rain fall data.

Retaining wall of width 1.5m and height 1.2m has already been constructed all around the toe of dumps up to a length of 3424 m to check the run -off and siltation.

8. Effluents containing of Cr +6 shall be treated to meet the prescribed standards before reuse/discharge. Effluent Treatment plant should be provided for treatment of mine water discharge and wastewater generated from the workshop and mineral separation plant. Run off from OB dumps and other surface run off should be analyzed for Cr +6 and in case its concentration is found higher than the permissible limit the water should be treated before reuse/discharge.

An Effluent Treatment Plant is operating for treatment of Mines discharge water. The conc. of Cr ⁺⁶ in treated discharge water is <0.005mg/l.

The tailing water (waste water of mineral separation plant) also is being treated by adding FeSO₄ before discharge into tailing pond. The treated tailing pond water is being collected in an intake pond and being re -used in beneficiation plant. Thus, zero discharge from Beneficiation Plant is being maintained.

Almost all mining machineries and transporting vehicles are being engaged on contract basis for transportation of OB and chrome ore. The company has few nos. of vehicles. The major repairing of these vehicles is being done at outside workshop and minor repairing is being done in our garage. Hence, discharge of workshop effluent is nil.

The total surface runoff water is being collected in two settling pits which are pumped to the ETP for treatment before final discharge.

 Separate impervious concrete pits for disposal of sludge shall be provided for the safe disposal of sludge generated from the mining operations.

The sludge generated from mining operations contains chrome ore. It is being fed in Beneficiation Plant to separate the Chrome.

10.	The Project proponent shall ensure that the quality of decanted effluents from the tailing pond confirm to the prescribed standards before discharge.	The effluents from tailing pond are not discharged outside. The super natant water of the tailing pond is being collected in a sump adjacent to the tailing pond and re-circulated in Beneficiation Plant.
11.	The Project proponent shall explore the possibility to reduce concentration of Cr ⁺⁶ in the tailing pond in consultation with an Expert Scientific Institution like NEERI.	The Conc. of Cr ⁺⁶ in tailings is being reduced by adding FeSO ₄ solution and disposed in the tailing pond.
12.	Plantation shall be raised in an area of 33.02 Ha including green belt in an area of 6.56 Ha by planting native species around ML area, OB dumps, and roads around worked out area etc. in consultation with local DFO/Agriculture Department . The density of the trees should be around 2000 plant species per hectare.	Plantation has been done over inactive/dead benches of OB dumps, Roadside, around C.O.B Plant and other places in an area of 34.92 Ha. Plantation is being carried out in consultation with local Forest Department.
13.	Regular monitoring of ground water level & quality should be carried out by establishing a network of existing wells and constructing new piezometers during the mining operation. The monitoring should be carried out four times in a year— pre-monsoon (April -May), monsoon (August) ,post - monsoon (November) and winter (January) and the data thus collected may be sent regularly to MOEF, Central Ground Water Authority and Regional Director Central Ground Water Board.	Monitoring of ground water level & quality is being carried out. The Monitoring reports has been sent & the monitoring report for the period from Oct,2020 to March 2021 is enclosed as: Ground water level : Annexure No2 Ground water quality: Annexure No3
14.	The project proponent shall carry out regular monitoring of ground water quality in all the 14 wells. The frequency of monitoring in 8 wells where concentration of Cr ⁺⁶ is within permissible limits, will be quarterly while in the remaining 6 wells it will be on monthly basis.	The monitoring test reports of ground water quality in 6 Bore wells & 3 Nos. of piezometer holes for concentration of Cr +6 are enclosed as Annexure No 4.
15.	Project Authorities should meet water requirement of the peripheral village(s), especially, if the village wells go dry due to mine de -watering.	As a part of peripheral development, the Project Authority has constructed Bore wells at nearby villages and also potable water is being provided to nearby villages by water tankers. Reading of the abstraction structures, used for water supply to local community are enclosed for reference as Annexure No.:5
16.	Permission from the competent authority should be obtained for drawl of ground water for domestic use.	
17.	Suitable rain water harvesting measures on long- term basis shall be planned and implemented in consultation with Regional Director, CGWB.	

18.	Drills should be wet operated or operated with dust extractors.	Wet Drilling is being practiced.
19.	Blasting operation should be carried out only during the daytime. Controlled blasting should be practiced. The mitigative measures for control of ground vibrations and to arrest fly rocks and boulders should be implemented.	Blasting operation is being carried out in day time only. Controlled blasting is being practiced by following Nonel & muffle blasting. Delay detonators are used for providing delay timings between rows and within rows of holes. Numbers of rows in a blast are restricted to less than three to get good fragmentation and to reduce fly rocks and ground vibration.
20.	The voids created at the end of mining shall be converted into water Body with shallow depths not exceeding 30m. The higher benches of the excavated void/mine pit shall be terraced and plantation done to stabilize the slopes. Peripheral fencing shall be done along the excavated area.	The same will be implemented at the end of mining operation. It has already been prepared in Mining Plan & submitted to IBM, Bhubaneswar
21.	Vehicular emissions should be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral. The vehicles should be covered with a tarpaulin and shall not be overloaded.	Vehicular emission of all machinery used in mining operations are being monitored regularly and kept under control of rigorous maintenance of all engines and changing of lubricants as per the recommendation of the manufacturer. HEMMs have valid PUC Certificate which is only allowed for operation inside the Mines. All the transporting vehicles are being covered with tarpaulin and over loading are strictly avoided.
22.	Consent to operate should be obtained from SPCB before enhancing Production capacity of the mine.	Consent to operate has been obtained from SPCB, Bhubaneswar. There is no proposal of enhancing the production capacity of the mine. CTO has been enclosed for as Annexure No7
23.	Sewage treatment Plant should be installed for the colony. ETP should also be provided for workshop and wastewater generated from Mining operations.	There is no colony inside the ML area. Almost all mining machineries and transporting vehicles are being engaged on contract basis for transportation of OB and chrome ore. The company has few Nos. of vehicles. However, major repairing of the vehicles is being done at outside workshop and minor repairing is being done in our garage. Hence, discharge of workshop effluent is nil. An ETP has already been established for treatment of mines water.
24.	A final mines closure plan along with details of corpus fund should be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.	The same will be submitted in due time to MOEF for approval.

GENERAL CONDITIONS:

SI. No.	Condition	Compliance Status
1	No change in mining technology & scope of working should be made without prior approval of the MoEF.	The Mining technology & scope of working has not been changed.
2	No change in the calendar plan including excavation, quantum of mineral Chromite and waste should be made.	The calendar plan including excavation, quantum of mineral Chromite and waste over burden has not been changed. The calendar plan including excavation, quantum of mineral chromite and waste over burden has been generated during the period (April 2020 to March, 2021) is given in Annexure No8 .
3	Conservation measures for protection of flora & fauna in the Core & Buffer Zone should be drawn up in consultation with local forest & wildlife department.	As per the advice of Forest Department, we are maintaining vehicles, watchman and infrastructural facility as measures to protect Flora & Fauna in core & buffer zone.
4	Four ambient air quality -monitoring stations should be established in the Core zone as well as in the Buffer zone for RPM, SPM, SO $_2$ & NO $_x$ monitoring. Location of the stations should be decided based on the meteorological data, topographical features, and environmentally and ecologically sensitive targets in consultation with the State Pollution Control Board.	Ambient Air quality monitoring stations has already been established in consultation with SPCB.
5	Data on ambient Air Quality (RPM, SPM, SO ₂ & NO _x) should be regularly submitted to the Ministry including its Regional Office at Bhubaneswar and the State Pollution Control Board / Central Pollution Control Board once in six months.	Test reports on Ambient Air Quality monitoring viz., PM ₁₀ , PM _{2.5} , SO ₂ , NO _x & CO is being monitored & submitted regularly. Monitoring report for the period Oct, 2020 to March, 2021 is enclosed as follows: Annexure No9: Core Zone Annexure No10: Buffer Zone
6	Fugitive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading & unloading and at transfer points should be provided and properly maintained.	out by water spraying on haul roads, Ore handling
7	below 85 dB(A) in work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plugs / muffs.	Control measures such as maintenance of all machines including checking of silencers regularly, controlled blasting using delay detonators, installing immovable machinery on foundations with suitable rubber pad and closed rooms is being followed -up. The workers engaged at noise generating areas are allowed to work on rotation basis with providing earplugs/muffs. Location wise noise level at work environment is enclosed as Annexure No2 .

8	Industrial wastewater (workshop & wastewater from the Mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19 th May 1993 and 31 st December 1993 or as amended from time to time. Oil & grease trap should be installed before discharge of workshop effluents.	The Mines waste water is being pumped out directly in to the intake tank of the ETP for treatment of Cr+6 and part of the treated water is used for plantation, dust suppression and surplus treated water is finally discharged to outside ML area. The analysis of this water shows that all parameters are well within the prescribed limit. The analysis report of Mines final discharge water after treatment in E.T.P., for the period October 2020 to March,2021 is enclosed as Annexure No12 . Almost all mining machineries and transporting vehicles are being engaged on contract basis for transportation of OB and chrome ore. The company has few nos. of vehicles. The major repairing of these vehicles is being done outside mines and minor repairing is being done in our garage. Hence, discharge of workshop effluent is not envisaged.
9	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects. Occupational health surveillance program of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.	In addition to water spraying to suppress dust generation, workers engaged in dusty areas such as drillers, dumper drivers, HEMM Operators are being provided with nose masks as precautionary measure. Training & information on safety, health hazards are being given to all categories of deserved workers. Occupational health surveillance programme to all categories of workers and employees is being conducted periodically by lung function test, audiometry test, vision tests and other tests. Workers/employees with defects are advised for suitable treatment or engaged on suitable rotation duty.
10	A separate Environment Management Cell with suitable qualified personnel should be set -up under the control of a Senior Executive, who will report directly to the Head of the Organization.	A separate Environment Management Cell with qualified personnel and well-equipped Environment Engineering Laboratory is functioning under the control of a Senior Executive. Besides we are carrying out all Environmental monitoring & analysis through a MoEF & NABL accredited laboratory M/S VisionTek Consultancy Services Pvt. Ltd., Bhubaneswar & the monitoring reports are enclosed as Annexures.
11	The Project authorities should inform to the Regional Office located at Bhubaneswar regarding date of financial closures and final approval of the Project by the concerned authorities and the date of start of land development work.	The final approval of the Project is 06.12.2006. It is a mining industry. Hence, land development work is a continuous process.
12	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry and its Regional Office located at Bhubaneswar.	Separate funds provision is made to carryout environmental protection measures. Details of expenses during the year 2020-21 is given in Annexure No13 .

ANNEXURE NO.-1

Visiontek Consultancy Services Pvt. Ltd.

क्ष्मिक क्षा कर्मारत

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

DUST FALL

DF1- No	DF1- Near Roof Top of Office Building								
		Unit		Analysis Result	Analysis Result				
SL.No.	Parameters	(mg of deposit per square meter per day)		DEC-20	MAR-21	Annual Avg			
1	Mercury as Hg	mg/m ² d		ND	ND	N D			
2	Nickel as Ni	mg/m ² d		ND	ND	N D			
3	Cobalt as CO	mg/m ² d		ND	ND	N D			
4	Arsenic as As	mg/m ² d		ND	ND	N D			

10. SOIL QUALITY

S1: Near Ore Plot Area

Sl.	Name of the	TIm:4	Togting Mathad		Analysis Resul			
No.	Parameters	Unit	Testing Method		DEC-20	MAR-21	Annual Avg	
1	Могонту ос Ца	ma/ka	EPA 3050B, 7000B		N	N	ND	ND
1	Mercury as Hg	mg/kg	Rev 02, 1996			ND	ND	
2	Ni akal aa Ni		EPA 3050B, 7000B		».T	ND	ND	
2	2 Nickel as Ni	mg/kg	Rev 02, 1996	IN IN	N		ND	
2	C-1-14 CO	/1	EPA 3050B, 7000B		NT	NID	MD	NID
3	3 Cobalt as CO	mg/kg	Rev 02, 1996		N	ND	ND	
4	Arsenic as As mg/kg EPA 3050B, 7000B Rev 02, 1996		NT) III	NID			
4		mg/kg	Rev 02, 1996	N	ND	ND		

S2: Near Truck Parking

Sl.	Name of the	IIm:4	Togting Mathed		Analysis Result			
No.	Parameters	Unit	Testing Method		DEC-20	MAR-21	Annual Avg	
1	Mercury as	mg/kg	EPA 3050B, 7000B		ND	NID	ND	
1	Hg Hg		Rev 02, 1996	ND		ND	ND	
2	Nickel as Ni	ma/ka	EPA 3050B, 7000B		ND	ND	ND	
2	Mickel as Mi	mg/kg	Rev 02, 1996		ND	ND	ND	
3	Cobalt as CO	ma/lza	EPA 3050B, 7000B					
3	Cobalt as CO	mg/kg	Rev 02, 1996		ND	ND	ND	
4	Amania as As	ma/Ira	EPA 3050B, 7000B					
4	Arsenic as As	mg/kg	Rev 02, 1996		ND	ND	ND	

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

isit us at: www.vcs1.org

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

S3 : Near Dump Area PERIOD: OCT-2020 TO MAR-2021

Sl.	Name of the	Unit	Unit Testing Method		Analysis Result		
No.	- Parameters		3		DEC-20	MAR-21	Annual Avg
1	Mercury as	mg/kg	EPA 3050B, 7000B		ND	ND	ND
1	Hg	mg/kg	Rev 02, 1996		ND	ND	ND
2	Nickel as Ni	mg/kg	EPA 3050B, 7000B		N)	ND	ND
2	TVICKCI as IVI	IIIg/Kg	Rev 02, 1996		11 /		ND
3	Cobalt as CO	ma/ka	EPA 3050B, 7000B		N ·	ND	ND
3	Cobait as CO	mg/kg	Rev 02, 1996		IN)		ND
4	Arsenic as	ma/ka	EPA 3050B, 7000B		N	ND	ND
4	As	mg/kg	Rev 02, 1996	11	ND	ND	

S4 : Near Lease Hold Area

Sl. **Analysis Result** Name of the Unit **Testing Method Parameters** DEC-20 MAR-21 **Annual Avg** No. EPA 3050B, 7000B Mercury as 1 mg/kg N ND ND Rev 02, 1996 Hg EPA 3050B, 7000B 2 Nickel as Ni N ND mg/kg ND Rev 02, 1996 EPA 3050B, 7000B 3 Cobalt as CO mg/kg N ND ND Rev 02, 1996 EPA 3050B, 7000B 4 Arsenic as As mg/kg N ND ND Rev 02, 1996

Puja Mohanly

Page 2 of 2

ANNEXURE NO.-2

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

6. GROUND WATER LEVEL ANALYSIS REPORT

GROUND WATER LEVEL ANALYSIS REPORT								
Locations	Unit		DEC-20	MAR-21	Avg			
GW1: Borewell Near Workshop of the Mines	mt/bgl		11.2	11.4	11.3			
GW2: Borewell Near Main Gate of OCM	mt/bgl		10.2	10.6	10.4			
GW3: Open well near Ostia Village	mt/bgl		3. ;	4.2	3.7			
GW4: Open well near Ostapal Village	mt/bgl		5. <u>'</u>	5.6	5.3			
GW5: Tubewell inside the shiva temple of VillagE Gurujanga	mt/bgl		10.2	10.8	10.5			
GW6: Tubewell Outside the shiva temple of Village Gurujanga	mt/bgl		11.1	11.4	11.1			
GW7: Eastern Side of the Quarry (Pz-1)	mt/bgl		4.	4.4	4.3			
GW8: Southern Side of the Quarry (Pz-2)	mt/bgl		4.	4.3	4.1			
GW9: Western Side of the Quarry (Pz-3)	mt/bgl		4.	4.1	4.2			

7. NOISE OUALITY ANALYSIS REPORT

			DEC-20	MAR-21		
Location ID	Location		Result in dB (A)	Result in dB (A)	Avg	
			Day Time	Day Time		
N1	Open cast Qu rry	Ambient	71	73	72	
N2	COB Plant		64	66	66	
N3	Mines loading & unloading		71.6	72.8	72.67	

Location ID	Location		Result in dB (A) Night	Result in dB (A) Night	Avg
			Time	Time	
N1	Open cast Quarry	Ambient	68	66	67.3
N2	COB Plant		58	59	59.7
N3	Mines loading & unloading		68.4	69.6	69.3

Mando

Puja Mihanly

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

2. GROUND WATER QUALITY ANALYSIS REPORT:

					rd as per 00:2012	Analysis Result	Analysis Result	Annual
SI. N	No. Parameter	Testing Method	Unit	Amended or	2015 & 2018			Average
				Acceptabl Permissible e Limit Limit		DEC-20	MAR-21	
Essei	ntial Characteristics						_	
1	Colour	Visual Comparison Method	Hazen	5	15	<5	<5	<5
•	Colour	APHA 23 RD Ed,2017 : 2120 B, C	Huzen	Ü	10		,5	,3
2	Odour	Threshold Odour Test		Agreeable	Agracable	Agracable	Agracable	Aavaaabi
2	Odour	APHA 23 RD Ed,2017 :2150 B		Agreeable	Agreeable	Agreeable	Agreeable	Agreeabl
		Flavor Threshold Test						
3	Taste	APHA 23 RD Ed,2017 : 216 C		Agreeable	Agreeable	Agreeable	Agreeable	Agreeabl
		Nephelometric Method						
4	Turbidity	APHA 23 RD Ed,2017 :2130 B	NTU	1	5	6.4	6.6	6.5
_	2200	pH Meter			No			
5	pH Value at 25°C	APHA 23 RD Ed,2017 : 450 H ⁺ B		6.5-8.5	Relaxation	6.78	6.84	6.8
	Total Hardness	EDTA Titrimetric Method						
6	(as CaCO ₃)	APHA 23 RD Ed,2017 : 2340 C	mg/l	200	600	188	189	186.3
		By AAS Method			No			
7	Iron (as Fe)	APHA 23 RD Ed,2017 : 3111, B	mg/l	1	Relaxation	0.28	0.26	0.3
_		Argentometric Method		4.50				
8	Chloride (as Cl)	APHA 23 RD Ed,2017 : 450 Cl ⁻ B	mg/l	250	1000	38	38	37.3
		Iodometric Method						
9	Residual, free Chlorine	APHA 23 RD Ed,2017 : 450 Cl, B	mg/l	0.2	1	ND	ND	ND
esir	rable Characteristics						1	
10	Dissolved Solids	Gravimetric Method	m a /1	700	2000	200	202	296.7
10	Dissolved Solids	APHA 23 RD Ed,2017 : 2540 C	mg/l	500	2000	288	292	296.7
	G1: (G)	EDTA Titrimetric Method	4	75	200	50.6	54.2	424.2
11	Calcium (as Ca)	APHA 23 RD Ed,2017 : 35 0Ca B	mg/l	75	200	50.6	51.2	131.3
		Calculation Method		20	100	21.2		24.6
12	Magnesium (as Mg)	APHA 23 RD Ed,2017 : 3500Mg B	mg/l	30	100	21.2	22.8	31.6
	a (a)	By AAS Method		0.05				20.0
13	Copper (as Cu)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	<0.05	<0.05	20.0
		Persulfate Method		0.1			0.5-	
14	Manganese (as Mn)	APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	<0.05	<0.05	<0.05
15	Sulphate (as SO ₄)	Turbidimetric Method	mg/l	200	400	30.2	31.4	30.5

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

		APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E						
6	Nitrate (as NO ₃)	By UV-Screen Method	mg/l	45	No	7.1	7.4	7.1
10	ividate (as ivo ₃)	APHA 23 RD Ed,2017: 4500 NO ₃ E	IIIg/1	42	Relaxation	7.1	7.4	7.1
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method	mg/l	1	1.5	0.16	0.18	0.16
		APHA 23 RD Ed,2017: 4500F- C						
8	Phenolic Compounds	Chloroform Extraction by Colorimetric Method	mg/l	0.001	0.002	<0.001	<0.001	<0.00
	(as C ₆ H ₅ OH)	APHA 23 RD Ed,2017: 553 B,D	C					
0	M (H)	AAS Method	а	0.001	No	.0.003	.0.003	10.00
9	Mercury (as Hg)	APHA 23 RD Ed,2017: 3112 B	mg/l	0.001	Relaxation	<0.002	<0.002	<0.00
		AAS Method	_		No		7.4 0.18 <0.001 <0.001 <0.01 <0.05 <0.01 1.8 ND ND 190 <0.001 0.45 <1.8	
0	Cadmium (as Cd)	APHA 23 RD Ed,2017: 311 B	mg/l	0.003	Relaxation	<0.001	<0.001	<0.00
		By AAS Method	_		No			
1	Selenium (as Se)	APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.01	Relaxation	<0.01	<0.01	<0.0
		By AAS Method			No			
22	Arsenic (as As)	APHA 23 RD Ed,2017: 311 B	mg/l	0.01	Relaxation	<0.01	<0.01	<0.0
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method	mg/l	0.05	No	<0.05	<0.05	<0.0
23	Cyaniuc (as Civ)	APHA 23 RD Ed,2017: 450 CN ⁻ C,D	mg/i	0.03	Relaxation	<0.03	0.18 <0.001 <0.002 <0.001 <0.01 <0.05 <0.01 1.8 ND ND 190 <0.001 0.45	\0.0 .
24	Lead (as Pb)	By AAS Method	m a /1	0.01	No	<0.01	-0.01	<0.0
24	Lead (as Pb)	APHA 23 RD Ed,2017 3111 B	mg/l	0.01	Relaxation	<0.01	<0.01	<0.0
15	7: (7:-)	By AAS Method	/1	-	15	1.6	4.0	1 5
25	Zinc (as Zn)	APHA 23 RD Ed,2017: 3111 B	mg/l	5	15	1.6	1.8	1.53
26	Anionic Detergents	Anionic Surfactants as MBAS	ma/l	0.2		ND	ND	ND
20	(as MBAS)	APHA 23RD Ed,2017: 5540 C	mg/l	0.2	-	ND	ND	ND
7	Min 1 Oil	Partition-Gravimetric Method	/1	0.5	No	ND	0.18 <0.001 <0.002 <0.001 <0.01 <0.05 <0.01 1.8 ND ND 190 <0.001 0.45	ND
27	Mineral Oil	APHA 23 RD Ed,2017: 5520 B	mg/l	0.5	Relaxation	ND	ND	ND
	411 11 11	Titration Method		200	600	407	400	400
28	Alkalinity	APHA 23 RD Ed,2017:2320 B	mg/l	200	600	187	190	189
		AAS Method						
29	Aluminium as(Al)	APHA 23 RD Ed,2017: 3111 D	mg/l	0.03	0.2	<0.001	<0.001	<0.00
	_ ,	Curcumin Method				_		
30	Boron (as B)	APHA 23 RD Ed,2017: 4500B, B	mg/l	0.5	2.4	0.51	0.45	0.49
	Total Coli form as TC	MPN Method	MPN/	Shall not be				
31	O VISIONTEA	жрн А 23 RD Ed,2017 : 9221 b	100ml	detectable in any 100ml sample		<1.8 Co	<1.8	<1.8

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment) (ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

GW2	: Bore well Near M	lain Gate of OCM						
				Standa	rd as per	Analysis	Analysis	
Sl.				IS -105	00:2012	Result	Result	Annual
No.	Parameter	Testing Method	Unit	Amended on	2015 & 2018	DEG 40	MAD 21	Averag
				Acceptable Limit	Permissible Limit	DEC-20	MAR-21	
Essen	tial Characteristics		ı	1		<u>, </u>		
1	Colour	Visual Comparison Method APHA 23 RD Ed,2017 : 2120 B, C	Hazen	5	15	<5	<5	<5
2	Odour	Threshold Odour Test		Aguacabla	Agussahla	Agranabla	A =========	A === == =
2	Odour	APHA 23 RD Ed,2017 :2150 B		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
2	T	Flavor Threshold Test						
3	Taste	APHA 23 RD Ed,2017 : 2160 (Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	T. 1:1:	Nephelometric Method	NUTLI		_		7.0	7.4
4	Turbidity	APHA 23 RD Ed,2017 :2130 B	NTU	1	5	7.1	7.3	7.1
_	H.W.1 250G	pH Meter		< 7.0.7	No	6.04	6.04	6.0
5	pH Value at 25°C	APHA 23 RD Ed,2017 : 4500H ⁺ B		6.5-8.5	Relaxation	6.91	6.91	6.9
_	Total Hardness	EDTA Titrimetric Method	Д	200	C00	103	404	400.0
6	(as CaCO ₃)	APHA 23 RD Ed,2017 : 2340 C	mg/l	200	600	192	194	193.3
7	I (E)	By AAS Method	Д		No	0.22	0.24	0.2
7	Iron (as Fe)	APHA 23 RD Ed,2017 : 3111, B	mg/l	1	Relaxation	0.32	0.24	0.3
8	Chlorida (as Cl.)	Argentometric Method	m a /1	250	1000	40	41	39.7
0	Chloride (as Cl)	APHA 23 RD Ed,2017 : 4500Cl ⁻ B	mg/l	250	1000	40	41	39.7
9	Residual, free	Iodometric Method	ma/l	0.2	1	ND	ND	ND
9	Chlorine	APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	IND
Desira	able Characteristics							
10	Dissolved Solids	Gravimetric Method APHA 23 RD Ed,2017: 254 C	mg/l	500	2000	332	278	316.7
11	Calcium (as Ca)	EDTA Titrimetric Method APHA 23 RD Ed,2017: 3500Ca B	mg/l	75	200	52.8	55.2	54.7
12	Magnesium (as Mg)	Calculation Method APHA 23 RD Ed,2017: 3500Mg B	mg/l	30	100	23.8	31.2	26.3
13	Copper (as Cu)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	<0.05	<0.05	<0.05
14	Manganese (as Mn)	Persulfate Method APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	<0.05	<0.05	<0.05
15	Sulphate (as SO ₄)	Turbidimetric Method APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	31.4	37.4	33.3
16	Nitrate (as NO ₃)	By UV-Screen Method APHA 23 ^{KD} Ed,2017: 4500 NO ₃ E	mg/l	45	No Polovotion	7.4	7.2	7.27
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method	mg/l	1	Relaxation 1.5	0.18	0.24	0.19
18	Phenolic Compounds	APHA 23 RD Ed,2017: 4500F C Chloroform Extraction by Colorimetric Method	mg/l	0.001	0.002	<0.001	<0.001	<0.001

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

Visiontek Consultancy Services Pvt. Ltd.

тс-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

	_		1	T				
19	Mercury (as Hg)	AAS Method	mg/l	0.001	No	<0.002	<0.002	<0.002
1)	Wicicuty (as rig)	APHA 23 RD Ed,2017: 3112 B	IIIg/1	0.001	Relaxation	\0.00Z	\0.002	\0.002
20	Cadmium (as Cd)	AAS Method		0.003	No	<0.001	<0.001	<0.001
20	Cadmium (as Cu)	APHA 23 RD Ed,2017: 3 11 B	mg/l	0.003	Relaxation	<0.001	<0.001	<0.001
21	C-1	By AAS Method	/1	0.01	No	40.01	40 O1	40.01
21	Selenium (as Se)	APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01
22		By AAS Method	a	0.04	No			
22	Arsenic (as As)	APHA 23 RD Ed,2017: 3 14 B	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method APHA 23 RD Ed,2017: 500 CN ⁻ C,D	mg/l	0.05	No Relaxation	<0.05	<0.05	<0.05
		By AAS Method			No			
24	Lead (as Pb)	APHA 23 RD Ed,2017 3111 B	mg/l	0.01	Relaxation	<0.01	<0.05 <0.01 1.8 ND	<0.01
2.5	3 (3)	By AAS Method		_				4.6=
25	Zinc (as Zn)	APHA 23 RD Ed,2017: 3111 B	mg/l	5	15	1.8	1.8	1.67
	Anionic Detergents	Anionic Surfactants as MBAS						
26	(as MBAS)	APHA 23RD Ed,2017: 5540 C	mg/l	0.2		ND	ND	ND
27) f	Partition-Gravimetric Method	a		No			
27	Mineral Oil	APHA 23 RD Ed,2017: 5520 B	mg/l	0.5	Relaxation	ND	ND	ND
•••		Titration Method						
28	Alkalinity	APHA 23 RD Ed,2017:2320 B	mg/l	200	600	206	168	194.7
•••		AAS Method						
29	Aluminium as(Al)	APHA 23 RD Ed,2017: 3111 D	mg/l	0.03	0.2	<0.001	<0.001	<0.001
20	D (D)	Curcumin Method						.0.4
30	Boron (as B)	APHA 23 RD Ed,2017: 45 0B, B	mg/l	0.5	2.4	<0.1	<0.1	<0.1
		MPN Method		Shall not be				
31	Total Coli form as TC	APHA 23 RD Ed,2017: 9221 B	MPN/ 100 ml	detectable in any 100ml sample		<1.8	<1.8	<1.8

Puja Mohanly

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

Visiontek Consultancy Services Pvt. Ltd.

म् स्याप्त

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

				Standa	rd as per	Analysis	Analysis	
Sl.				IS -105	500:2012	Result	Result	Annual
No.	Parameter	Testing Method	Unit	Amended or	2015 & 2018			Average
				Acceptable Limit	Permissible Limit	DEC-20	MAR-21	
Essent	ial Characteristics		1	23	2331114			
		Visual Comparison Method		_		_	_	_
1	Colour	APHA 23 RD Ed,2017 : 2120 B, C	Hazen	5	15	<5	<5	<5
_		Threshold Odour Test						
2	Odour	APHA 23 RD Ed,2017 :2150 B		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
_	_	Flavor Threshold Test						
3	Taste	APHA 23 RD Ed,2017 : 2160 C		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
		Nephelometric Method						
4	Turbidity	APHA 23 RD Ed,2017 :2130 B	NTU	1	5	7.6	7.8	7.6
		pH Meter			No			
5	pH Value at 25°C	APHA 23 RD Ed,2017 : 4500H ⁺ B		6.5-8.5	Relaxation	6.89	6.91	6.9
	Total Hardness	EDTA Titrimetric Method						
6	(as CaCO ₃)	APHA 23 RD Ed,2017 : 2340 C	mg/l	200	600	191	194	191.7
		By AAS Method			No			
7	Iron (as Fe)	APHA 23 RD Ed,2017 : 3111, B	mg/l	1	Relaxation	0.22	0.24	0.2
		Argentometric Method						
8	Chloride (as Cl)	APHA 23 RD Ed,2017 : 4500Cl ⁻ B	mg/l	250	1000	41	41	42.0
	Residual, free	Iodometric Method						
9	Chlorine	APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	ND
Desira	ble Characteristics							
1.0	D: 1 10 1:1	Gravimetric Method	a		•000	070	070	276.7
10	Dissolved Solids	APHA 23 RD Ed,2017 : 2540 C	mg/l	500	2000	272	278	276.7
	a.i. (a)	EDTA Titrimetric Method			-00			
11	Calcium (as Ca)	APHA 23 RD Ed,2017 : 3500Ca B	mg/l	75	200	54.6	55.2	56.6
	Magnesium (as	Calculation Method						20 =
12	Mg)	APHA 23 RD Ed,2017 : 3500 g\B	mg/l	30	100	30.8	31.2	30.7
	a (a)	By AAS Method						.0.05
13	Copper (as Cu)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	<0.05	<0.05	<0.05
	Manganese (as	Persulfate Method	_	_	_		_	
14	Mn)	APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	<0.05	<0.05	<0.05
		Turbidimetric Method	_	_	_			
15	Sulphate (as SO ₄)	APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	36.6	37.4	36.0

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

Visiontek Consultancy Services Pvt. Ltd.

Lu

TC-7944


(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES PERIOD: OCT20 TO MAR'21

	1	By UV-Screen Method	1	1					
16	Nitrate (as NO ₃)	APHA 23 RD Ed,2017: 4500 NO E	mg/l	45	No Relaxation	6.2	6.9	7.2	6.77
		Distillation followed by Spectrophotometric Method							
17	Fluoride (as F)	APHA 23 RD Ed,2017: 4500F- C	mg/l	1	1.5	0.21	0.22	0.24	0.22
	Phenolic	Chloroform Extraction by							
18	Compounds	Colorimetric Method	mg/l	0.001	0.002	<0.001	<0.001	<0.001	<0.001
	(as C ₆ H ₅ OH)	APHA 23 RD Ed,2017: 5530 B,D							
19	Managery (as Ha)	AAS Method	m a /1	0.001	No	<0.002	0.003	<0.003	<0.003
19	Mercury (as Hg)	APHA 23 RD Ed,2017: 3112 B	mg/l	0.001	Relaxation	<0.002	0.002	<0.002	<0.002
20	G 1 : (G)	AAS Method	Л	0.002	No	-0.004	0.001	-0.004	10.001
20	Cadmium (as Cd)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.003	Relaxation	<0.001	0.001	<0.001	<0.001
		By AAS Method	_		No				
21	Selenium (as Se)	APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01	<0.01
22		By AAS Method	/1	0.01	No	-0.01	:0.01	.0.01	10.01
22	Arsenic (as As)	APHA 23 RD Ed,2017: 3114 B	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01	<0.01
23	Cyanide (as CN)	Distillation followed by (Spectophotometric Method APHA 23 RD Ed,2017: 4500 CN ⁻ C,D	mg/l	0.05	No Relaxation	<0.05	<0.05	<0.05	<0.05
		By AAS Method			No				
24	Lead (as Pb)	APHA 23 RD Ed,2017 3111 B	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01	<0.01
		By AAS Method				_			
25	Zinc (as Zn)	APHA 23 RD Ed,2017: 3111 B	mg/l	5	15	1.6	1.6	1.8	1.67
2.	Anionic Detergents	Anionic Surfactants as MBAS	Д	0.4					
26	(as MBAS)	APHA 23RD Ed,2017: 5540 C	mg/l	0.2		ND	ND	ND	ND
		Partition-Gravimetric Method			No				
27	Mineral Oil	APHA 23 RD Ed,2017: 5520 B	mg/l	0.5	Relaxation	ND	ND	ND	ND
		Titration Method					_		
28	Alkalinity	APHA 23 RD Ed,2017:2320 B	mg/l	200	600	180	172	168	173.3
		AAS Method							
29	Aluminium as(Al)	APHA 23 RD Ed,2017: 3111 D	mg/l	0.03	0.2	<0.001	0.001	<0.001	<0.001
		Curcumin Method							-
30	Boron (as B)	APHA 23 RD Ed,2017: 4500B, B	mg/l	0.5	2.4	<0.1	<0.1	<0.1	<0.1
		MPN Method		Shall					
31	Total Coli form as TC	APHA 23 RD Ed,2017 : 9221 b	MPN/ 100ml	not be detectab le in any 100ml sample		<1.8	<1.8	<1.8	<1.8

ं भारत

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

			: U	CT-2020	IU MAK-	2021			
GV	V4: Open well no	ear Ostapal Village	1			, · · · · · · · · · · · · · · · · · · ·		1	1
~				Standar	-		Analysis Result	Analysis Result	
Sl. No	Parameter	Testing Method	Unit	IS -105	2015 & 2018		Result	Result	Annual
•				Acceptable	Permissible		DEC-20	MAR-21	Average
		T.	. 161	Limit	Limit				
		1	sential Ch	aracteristics					
1	Colour	Visual Comparison Method	Hazen	5	15		<5	<5	<5
		APHA 23 RD Ed,2017 : 2120 B, C		_					
2	Odour	Threshold Odour Test		Agreeable	Agreeable		greeable	Agreeable	Agreeable
		APHA 23 RD Ed,2017 :2150 B							
3	Taste	Flavor Threshold Test		Agreeable	Agreeable		greeable	Agreeable	Agreeable
		APHA 23 RD Ed,2017 : 2160 C							
4	Turbidity	Nephelometric Method	NTU	1	5		6.6	6.8	6.7
		APHA 23 RD Ed,2017 :2130 B							
5	pH Value at	pH Meter		6.5-8.5	No		7.4	7.46	7.4
	25°C	APHA 23 RD Ed,2017 : 4500H ⁺ B			Relaxation				
6	Total Hardness	EDTA Titrimetric Method	mg/l	200	600		112	114	112.0
	(as CaCO ₃)	APHA 23 RD Ed,2017 : 2340 C	8						
7	Iron (as Fe)	By AAS Method	mg/l	1	No		0.22	0.26	0.2
	22 212 (432 2 3)	APHA 23 RD Ed,2017 : 3111, B	8		Relaxation		0.22	0.20	0.1
8	Chloride (as Cl)	Argentometric Method	mg/l	250	1000		40	42	41.3
	Cinoriae (as er)	APHA 23 RD Ed,2017 : 4500Cl ⁻ B	1115/1	250	1000		.0		41.5
9	Residual, free	Iodometric Method	mg/l	0.2	1		ND	ND	ND
	Chlorine	APHA 23 RD Ed,2017 : 4500Cl, B	1115/1	V. 2			IVE	IND	IVD
Desi	irable Characteristic	2S							
10	Dissolved Solids	Gravimetric Method	mg/l	500	2000		188	192	190.0
10	Dissolved Bollds	APHA 23 RD Ed,2017 : 2540 C	IIIg/1	200	2000		100	132	130.0
11	Calcium (as Ca)	EDTA Titrimetric Method	mg/l	75	200		44	50	45.3
11	Carcium (as Ca)	APHA 23 RD Ed,2017 : 3500Ca B	IIIg/1	70	200			30	75.5
12	Magnesium (as	Calculation Method	mg/l	30	100		20.8	21.4	21.1
12	Mg)	APHA 23 RD Ed,2017 : 3500Mg B	IIIg/1	30	100		20.6	21.4	21.1
13	Copper (as Cu)	By AAS Method	mg/l	0.05	1.5		<0.05	<0.05	<0.05
13	Copper (as Cu)	APHA 23 RD Ed,2017: 3111 B	IIIg/1	0.03	1.3		\0.03	<0.03	\0.03
14	Manganese (as	Persulfate Method	ma/1	0.1	0.3		<0.05	<0.05	<0.0F
14	Mn)	APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3		<0.05	\U.U5	<0.05
15	Sulphate (as	Turbidimetric Method	m a /1	200	400		4.6	4.0	4 -
15	SO ₄)	APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400		4.6	4.8	4.5
16	Nitrate (as NO ₃)	By UV-Screen Method APHA 23 RD Ed,2017: 4500 NO ₃ E	mg/l	45	No Relaxation		1.2	1.8	1.37

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

Visiontek Consultancy Services Pvt. Ltd.

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

				•				,
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method	mg/l	1	1.5	0.012	0.016	0.01
		APHA 23 RD Ed,2017: 4500F- C						
18	Phenolic Compounds	Chloroform Extraction by Colorimetric Method	mg/l	0.001	0.002	<0.001	<0.001	<0.001
	(as C ₆ H ₅ OH)	APHA 23 RD Ed,2017: 5530 B,D	3-3-8			1332		
10	M (II)	AAS Method	/1	0.001	No	-0.003	-0.003	10 000
19	Mercury (as Hg)	APHA 23 RD Ed,2017: 3112 B	mg/l	0.001	Relaxation	<0.002	<0.002	<0.002
20	Cadmium (as	AAS Method	а	0.002	No	0.004	0.004	
20	Cd)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.003	Relaxation	<0.001	<0.001	<0.001
2.1		By AAS Method	Д	0.04	No	0.01	0.01	
21	Selenium (as Se)	APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01
22		By AAS Method	Д	0.04	No	-0.04	.0.01	.0.01
22	Arsenic (as As)	APHA 23 RD Ed,2017: 3114 B	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method	ma/l	0.05	No	<0.05	<0.05	<0.05
23	Cyanide (as Civ)	APHA 23 RD Ed,2017: 4500 CN- C,D	mg/l	0.03	Relaxation	Z0.05	<0.05	<0.05
24	Lead (as Pb)	By AAS Method	mg/l	0.01	No	<0.01	<0.01	<0.01
24	Lead (as Fb)	APHA 23 RD Ed,2017 3111 B	IIIg/I	0.01	Relaxation	<0.01	V0.01	\0.01
25	Zina (as Zn)	By AAS Method	ma/I	5	15	2.4	2.6	2.53
25	Zinc (as Zn)	APHA 23 RD Ed,2017: 3111 B	mg/l	5	15	2.4	2.6	2.55
26	Anionic Detergents	Anionic Surfactants as MBAS	mg/l	0.2		ND	ND	ND
	(as MBAS)	APHA 23RD Ed,2017: 5540 C						
27	Minaral Oil	Partition-Gravimetric Metho	/1	0.5	No	ND	ND	ND
27	Mineral Oil	APHA 23 RD Ed,2017: 5520 B	mg/l	0.5	Relaxation	ND	ND	ND
20	A Uralimiter	Titration Method	m a /1	200	600	0.4	02	94.7
28	Alkalinity	APHA 23 RD Ed,2017:2320 B	mg/l	200	600	84	82	84.7
20	Aluminium as	AAS Method	п	0.02	0.2	2 224	.0.004	10.004
29	(Al)	APHA 23 RD Ed,2017: 3111 D	mg/l	0.03	0.2	<0.001	<0.001	<0.001
20	D (D)	Curcumin Method	7	0.5			.0.4	10.1
30	Boron (as B)	APHA 23 RD Ed,2017: 4500B,	mg/l	0.5	2.4	<0.1	<0.1	<0.1
2.5	Total Coli form	MPN Method	MPN/	Shall not be detectable in		_		.4.5
31	as TC	APHA 23 RD Ed,2017 : 9221 b	100ml	any 100ml sample		<1.8	<1.8	<1.8

भारतः

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

				~	,			
					rd as per	Analysis Result	Analysis Result	
Sl.	Parameter	Testing Method	Unit		00:2012	1105411		Annual
No.				Amended or Acceptable Limit	2015 & 2018 Permissible Limit	DEC-20	MAR-21	Average
Esser	itial Characteristics							
	G 1	Visual Comparison Method		-	15		_	
1	Colour	APHA 23 RD Ed,2017 : 2120 B, C	Hazen	5	15	<5	<5	<5
2	0.1	Threshold Odour Test						
2	Odour	APHA 23 RD Ed,2017 :2150 B	-	Agreeable	Agreeable	greeable	Agreeable	Agreeab
	_	Flavor Threshold Test						
3	Taste	APHA 23 RD Ed,2017 : 2160 C		Agreeable	Agreeable	greeable	Agreeable	Agreeab
		Nephelometric Method						
4	Turbidity	APHA 23 RD Ed,2017 :2130 B	NTU	1	5	7.1	7.4	7.3
		pH Meter			No			
5	pH Value at 25°C	APHA 23 RD Ed,2017 : 4500H ⁺ B	-	6.5-8.5	Relaxation	7.6	7.62	7.5
	Total Hardness	EDTA Titrimetric Method						
6	(as CaCO ₃)	APHA 23 RD Ed,2017 : 2340 C	mg/l	200	600	92	90	90.7
		By AAS Method			No			
7	Iron (as Fe)	APHA 23 RD Ed,2017 : 3111, B	mg/l	1	Relaxation	0.18	P. Agreeable 7.4 7.62 90 0.22 52 ND 116 36 12.8 <0.05	0.2
		Argentometric Method						
8	Chloride (as Cl)	APHA 23 RD Ed,2017 : 4500Cl ⁻ B	mg/l	250	1000	48	52	50.0
	Residual, free	Iodometric Method						
9	Chlorine	APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	ND
Desir	able Characteristics							
		Gravimetric Method						
10	Dissolved Solids	APHA 23 RD Ed,2017 : 2540 C	mg/l	500	2000	114	116	113.3
		EDTA Titrimetric Method						
11	Calcium (as Ca)	APHA 23 RD Ed,2017 : 3500Ca B	mg/l	75	200	32	36	32.7
	Magnesium (as	Calculation Method						
12	Mg)	APHA 23 RD Ed,2017 : 3500 gNB	mg/l	30	100	12.1	12.8	12.6
		By AAS Method						
13	Copper (as Cu)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	<0.05	<0.05	<0.05
	Manganese (as	Persulfate Method	1					
14	Mn)	APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	<0.05	<0.05	<0.05
		Turbidimetric Method	1					
15	Sulphate (as SO ₄)	APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	4.2	5.1	4.6
16	Nitrate (as NO ₃)	By UV-Screen Method	mg/l	45	No	0.78	0.84	0.78

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

(Committed For Better Environment)
(ISO 9001:2

t. Ltd.

l)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

		APHA 23 RD Ed,2017: 4500 NO ₃ -E						
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method	mg/l	1	1.5	0.013	0.014	0.01
		APHA 23 RD Ed,2017: 4500F- C						
18	Phenolic Compounds	Chloroform Extraction by Colorimetric Method	mg/l	0.001	0.002	<0.001	<0.001	<0.001
	(as C ₆ H ₅ OH)	APHA 23 RD Ed,2017: 5530 B,D						
19	Managany (ag Ha)	AAS Method	m a /1	0.001	No	10.002	*0.003	40.003
19	Mercury (as Hg)	APHA 23 RD Ed,2017: 3112 B	mg/l	0.001	Relaxation	<0.002	<0.002	<0.002
20		AAS Method		0.002	No	.0.001	0.004	
20	Cadmium (as Cd)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.003	Relaxation	<0.001	<0.001	<0.001
		By AAS Method			No			
21	Selenium (as Se)	APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01
22	Arsenic (as As)	By AAS Method	mg/l	0.01	No	<0.01	<0.01	<0.01
22	Arsenic (as As)	APHA 23 RD Ed,2017: 3114 B	IIIg/1	0.01	Relaxation	<0.01	V0.01	\0.01
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method	mg/l	0.05	No	<0.05	<0.05	<0.05
		APHA 23 RD Ed,2017: 4500 CN ⁻ C,D	18		Relaxation	10.00	10.00	
2.4	I I/ DI)	By AAS Method	Д	0.01	No	0.04	0.01	.0.04
24	Lead (as Pb)	APHA 23 RD Ed,2017 3111 B	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01
25	7' (7)	By AAS Method	п	_	1.5	2.4	2.4	2 22
25	Zinc (as Zn)	APHA 23 RD Ed,2017: 3111 B	mg/l	5	15	3.1	3.4	3.23
26	Anionic Detergents	Anionic Surfactants as MBAS		0.2		N.D.	NB	
26	(as MBAS)	APHA 23RD Ed,2017: 5540 C	mg/l	0.2		ND	ND	ND
	100	Partition-Gravimetric Method		0.7	No			
27	Mineral Oil	APHA 23 RD Ed,2017: 5520 B	mg/l	0.5	Relaxation	ND	ND	ND
		Titration Method						
28	Alkalinity	APHA 23 RD Ed,2017:2320 B	mg/l	200	600	26	32	28.7
		AAS Method						
29	Aluminium as(Al)	APHA 23 RD Ed,2017: 3111 D	mg/l	0.03	0.2	<0.001	<0.001	<0.002
		Curcumin Method						
30	Boron (as B)	APHA 23 RD Ed,2017: 4500B, B	mg/l	0.5	2.4	<0.1	<0.1	<0.1
		MPN Method	MPN/	Shall not				
31	Total Coli form as TC	APHA 23 RD Ed,2017 : 9221 b	100ml	be detectable in any 100ml sample		<1.8	<1.8	<1.8

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

				Standar	rd as per			
~-					00:2012	Analysis Result	Analysis Result	
Sl. No.	Parameter	Testing Method	Unit		2015 & 2018			Annual Average
				Acceptable Limit	Permissible Limit	DEC-20	MAR-21	S
Essei	ntial Characteristics							
1	Colour	Visual Comparison Method	Hazen	5	15	<5	<5	<5
1	Coloui	APHA 23 RD Ed,2017 : 2120 B, C	Hazen	3	15	\3		\5
2	Odour	Threshold Odour Test		Agreeable	Agreeable	Agreeable	Agreeable	Agreesh
2	Odour	APHA 23 RD Ed,2017 :2150 B		Agreeable	Agreeable			Agreeabl
2		Flavor Threshold Test				Agreeable	Agreeable	
3	Taste	APHA 23 RD Ed,2017 : 2160 C	Ī	Agreeable	Agreeable			Agreeabl
		Nephelometric Method		_	_	7.6	7.5	
4	Turbidity	APHA 23 RD Ed,2017 :2130 B	NTU	1	5	\sim		7.6
_		pH Meter			No	7.44	7.48	
5	pH Value at 25°C	APHA 23 RD Ed,2017 : 4500H ⁺ B		6.5-8.5	Relaxation			7.4
	Total Hardness	EDTA Titrimetric Method				66	68	
6	(as CaCO ₃)	APHA 23 RD Ed,2017 : 2340 C	mg/l	200	600			64.7
		By AAS Method			No	0.16	0.18	
7	Iron (as Fe)	APHA 23 RD Ed,2017 : 3111, I	mg/l	1	Relaxation	0.10	0.10	0.2
		Argentometric Method				46	48	
8	Chloride (as Cl)	APHA 23 RD Ed,2017 : 4500Cl ⁻ B	mg/l	250	1000	40	40	47.3
	Residual, free	Iodometric Method						
9	Chlorine	APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	ND
Desi	rable Characteristic							1
		Gravimetric Method				92	96	
10	Dissolved Solids	APHA 23 RD Ed,2017 : 2540 C	mg/l	500	2000	32	30	92.7
		EDTA Titrimetric Method				26	28	
11	Calcium (as Ca)	APHA 23 RD Ed,2017 : 3500Ca B	mg/l	75	200	20	20	26.0
		Calculation Method				10.6	11.2	
12	Magnesium (as Mg)	APHA 23 RD Ed,2017 : 3500 gNB	mg/l	30	100	10.6	11.2	10.9
		By AAS Method				-0.05	:0.05	
13	Copper (as Cu)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	<0.05	<0.05	<0.05
		Persulfate Method				0.05	0.05	
14	Manganese (as Mn)	APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	<0.05	<0.05	<0.05
		Turbidimetric Method						
15	Sulphate (as SO ₄)	APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	3.8	4.2	3.7
16	Nitrate (as NO ₃)	By UV-Screen Method	mg/l	45	No Relaxation	0.66	0.71	0.66

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

		APHA 23 RD Ed,2017: 4500 NO ₃ -E						
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method	mg/l	1	1.5	0.011	0.012	0.01
	(/	APHA 23 RD Ed,2017: 4500F° C	8	_	-1.0	0.011	0.012	0.02
18	Phenolic Compounds	Chloroform Extraction by Colorimetric Method	mg/l	0.001	0.002	<0.001	<0.001	<0.001
	(as C ₆ H ₅ OH)	APHA 23 RD Ed,2017: 5530 B,D				10.001	10.001	
19	Mercury (as Hg)	AAS Method	mg/l	0.001	No	<0.002	<0.002	<0.002
19	Mercury (as Fig)	APHA 23 RD Ed,2017: 3112 B	IIIg/I	0.001	Relaxation	\0.002	\0.00Z	<0.002
20	Cadmium (as Cd)	AAS Method	m a/l	0.003	No	<0.001	<0.001	<0.001
20	Cadinium (as Cd)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.003	Relaxation	<0.001	<0.001	<0.001
21	C-1	By AAS Method	/1	0.01	No	<0.01	<0.01	10.01
21	Selenium (as Se)	APHA 23 RD Ed,2017: 3500 € C	mg/l	0.01	Relaxation	<0.01	\0.01	<0.01
22		By AAS Method	/1	0.01	No	<0.01	<0.01	10.01
22	Arsenic (as As)	APHA 23 RD Ed,2017: 3114 B	mg/l	0.01	Relaxation	₹0.01	<0.01	<0.01
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method	mg/l	0.05	No	<0.05	<0.05	<0.05
		APHA 23 RD Ed,2017: 4500 CN- C,D			Relaxation	10.03	10.03	
24	Lead (as Pb)	By AAS Method APHA 23 RD Ed,2017 3111 B	mg/l	0.01	No Relaxation	<0.01	<0.01	<0.01
25	7. (7.)	By AAS Method	/1	_	15	2.6	4.2	2.07
25	Zinc (as Zn)	APHA 23 RD Ed,2017: 3111 B	mg/l	5	15	3.6	4.2	3.87
26	Anionic Detergents	Anionic Surfactants as MBAS		0.2		ND	ND	
26	(as MBAS)	APHA 23RD Ed,2017: 5540 C	mg/l	0.2		ND	ND	ND
27	M: 107	Partition-Gravimetric Method		0.5	No	ND	ND	
27	Mineral Oil	APHA 23 RD Ed,2017: 5520 B	mg/l	0.5	Relaxation	ND	ND	ND
20	A 11 11 14	Titration Method	/1	200	COO	10	22	20.0
28	Alkalinity	APHA 23 RD Ed,2017:2320 B	mg/l	200	600	18	22	20.0
20	A1 (A1)	AAS Method	/1	0.02	0.2	~ 0.001	40.001	10.001
29	Aluminium as(Al)	APHA 23 RD Ed,2017: 3111 D	mg/l	0.03	0.2	<0.001	<0.001	<0.001
20	D (D)	Curcumin Method		0.5	2.4	10.1	10.1	.0.4
30	Boron (as B)	APHA 23 RD Ed,2017: 4500 ₽ , B	mg/l	0.5	2.4	<0.1	<0.1	<0.1
21	Total Coli form as	MPN Method	MPN/	Shall not be detectable in				
31	TC TC	APHA 23 RD Ed,2017 : 9221 b	100ml	any 100ml sample		<1.8	<1.8	<1.8

THICH AND A STREET OF THE STRE

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT.-2020 TO MAR-2021

				Standar	d as per	Analysis	Analysis	
Sl.			***	IS -105	00:2012	Result	Result	Annual
No.	Parameter	Testing Method	Unit	Amended on	2015 & 2018	PEG 40	35.5.64	Average
				Acceptable Permissible Limit Limit		DEC-20	MAR-21	
Esser	ntial Characteristics	T				Ţ	T	
1	Colour	Visual Comparison Method	Hazen	5	15	<5	<5	<5
		APHA 23 RD Ed,2017 : 2120 B, C						
2	Odour	Threshold Odour Test		Agreeable	Agreeable	greeable	Agreeable	Agreeab
	Ououi	APHA 23 RD Ed,2017 :2150 B		rigiccusic	rigreeuste	g. coup.c	7.8.0000.0	Agreeds
3	Taste	Flavor Threshold Test		Agreeable	Agreeable	greeable	Agreeable	Agreeab
3	Taste	APHA 23 RD Ed,2017 : 2160 C		Agreeable	Agreeable	greeable	Agreeable	Agreeau
4	Turkiditu	Nephelometric Method	NTU	1	5	6.88	6.8	6.0
4	Turbidity	APHA 23 RD Ed,2017 :2130 B	NIU	1	3	0.88	0.8	6.8
_	H.V.1 (250C)	pH Meter		< 5 0 5	No	7.21	7.26	7.0
5	pH Value at 25°C	APHA 23 RD Ed,2017 : 4500H ⁺ B		6.5-8.5	Relaxation	7.31	7.36	7.3
	Total Hardness	EDTA Titrimetric Method				10.1		
6	(as CaCO ₃)	APHA 23 RD Ed,2017 : 2340 C	mg/l	200	600	124	120	122.7
		By AAS Method			No			
7	Iron (as Fe)	APHA 23 RD Ed,2017 : 3111, B	mg/l	1	Relaxation	0.29	0.24	0.3
		Argentometric Method					_	
8	Chloride (as Cl)	APHA 23 RD Ed,2017 : 4500Cl ⁻ B	mg/l	250	1000	38	40	38.7
	Residual, free	Iodometric Method						
9	Chlorine	APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	ND
Desi	rable Characteristic							I.
	5	Gravimetric Method		= 00	2000	212	216	242.7
10	Dissolved Solids	APHA 23 RD Ed,2017 : 2540 C	mg/l	500	2000	212	216	212.7
		EDTA Titrimetric Method					40	
11	Calcium (as Ca)	APHA 23 RD Ed,2017 : 3500Ca B	mg/l	75	200	44	48	46.7
	Magnesium (as	Calculation Method						
12	Mg)	APHA 23 RD Ed,2017 : 3500 gNB	mg/l	30	100	20	21	19.7
		By AAS Method						
13	Copper (as Cu)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	<0.05	<0.05	<0.05
	Manganese (as	Persulfate Method						
14	Mn)	APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	<0.05	<0.05	<0.05
		Turbidimetric Method						
15	Sulphate (as SO ₄)	APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	3.6	4.1	3.6
16	Nitrate (as NO ₃)	By UV-Screen Method	mg/l	45	No Relaxation	1.4	1.2	1.27

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

प्रतिकारिक प्रतिकार प्रतिकार

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

		ADILA 22RD E 1 2017, 4500 NO -E						
		APHA 23 RD Ed,2017: 4500 NO ₃ -E						
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method	mg/l	1	1.5	0.013	0.014	0.01
17	Truoride (us 1)	APHA 23 RD Ed,2017: 4500F- C	mg/1	•	1.0	0.012	0.014	0.01
18	Phenolic Compounds	Chloroform Extraction by Colorimetric Method	mg/l	0.001	0.002	<0.001	<0.001	<0.001
	(as C ₆ H ₅ OH)	APHA 23 RD Ed,2017: 5530 B,D				\0.001	\0.001	
19	M (H)	AAS Method	4	0.001	No	<0.002	<0.002	10.000
19	Mercury (as Hg)	APHA 23 RD Ed,2017: 3112 F	mg/l	0.001	Relaxation	<0.002	<0.002	<0.002
20	G 1 : (G)	AAS Method	/1	0.002	No	<0.001	<0.001	10.001
20	Cadmium (as Cd)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.003	Relaxation	<0.001	<0.001	<0.001
21		By AAS Method		0.01	No	10.01	10.01	.0.04
21	Selenium (as Se)	APHA 23 RD Ed,2017: 3500 € C	mg/l	0.01	Relaxation	<0.01	<0.01	<0.01
		By AAS Method		0.04	No	<0.01	<0.01	
22	Arsenic (as As)	APHA 23 RD Ed,2017: 3114 B	mg/l	0.01	Relaxation			<0.01
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method	mg/l	0.05	No	<0.05	<0.05	<0.05
		APHA 23 RD Ed,2017: 4500 CN ⁻ C,D			Relaxation			
24	Lead (as Pb)	By AAS Method APHA 23 RD Ed,2017 3111 B	mg/l	0.01	No Relaxation	<0.01	<0.01	<0.01
2.5	5 . (5 .)	By AAS Method			1-	3.2	3.6	
25	Zinc (as Zn)	APHA 23 RD Ed,2017: 3111 F	mg/l	5	15			3.53
2.5	Anionic Detergents	Anionic Surfactants as MBAS		0.0		ND	ND	
26	(as MBAS)	APHA 23RD Ed,2017: 5540 C	mg/l	0.2				ND
		Partition-Gravimetric Method			No	ND	ND	
27	Mineral Oil	APHA 23 RD Ed,2017: 5520 I	mg/l	0.5	Relaxation			ND
20		Titration Method		•••	<00	50	52	-4.0
28	Alkalinity	APHA 23 RD Ed,2017:2320 B	mg/l	200	600			51.3
		AAS Method				<0.001	<0.001	
29	Aluminium as(Al)	APHA 23 RD Ed,2017: 3111 [mg/l	0.03	0.2			<0.001
		Curcumin Method				<0.1	<0.1	
30	Boron (as B)	APHA 23 RD Ed,2017: 4500 IB	mg/l	0.5	2.4			<0.1
	Total Coli form as	MPN Method	MPN/	Shall not be detectable in				
31	TC TC	APHA 23 RD Ed,2017 : 9221 b	100ml	any 100ml sample		<1.8	<1.8	<1.8

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

				Standar	d as per	Analysis	Analysis	
Sl.			***	IS -105	00:2012	Result	Result	Annual
No.	Parameter	Testing Method	Unit	Amended on	2015 & 2018	DTG 40	35.5.61	Average
				Acceptable Permissible Limit Limit		DEC-20	MAR-21	
Esser	ntial Characteristics				T		T	
1	Colour	Visual Comparison Method	Hazen	5	15	<5	<5	<5
		APHA 23 RD Ed,2017 : 2120 B, C						
2	Odour	Threshold Odour Test		Agreeable	Agreeable	greeable	Agreeable	Agreeabl
	o do da	APHA 23 RD Ed,2017 :2150 B		11910000010	11gi comoio			7161 0000
3	Taste	Flavor Threshold Test		Agreeable	Agreeable	greeable	Agreeable	Agreeab
3	Taste	APHA 23 RD Ed,2017 : 2160 C		Agrecanic	Agreeable			Agreeab
4	Turbidity	Nephelometric Method	NTU	1	5	7.44	7.7	7 5
4	Turbidity	APHA 23 RD Ed,2017 :2130 B	NIU	1	5			7.5
_	H.V.1 4250G	pH Meter		< 5.0.5	No	7.5	7.52	7.5
5	pH Value at 25°C	APHA 23 RD Ed,2017 : 4500H ⁺ B		6.5-8.5	Relaxation			7.5
_	Total Hardness	EDTA Titrimetric Method		200	COO	110	76	00.7
6	(as CaCO ₃)	APHA 23 RD Ed,2017 : 2340 C	mg/l	200	600			98.7
		By AAS Method			No	0.18	0.16	
7	Iron (as Fe)	APHA 23 RD Ed,2017 : 3111, B	mg/l	1	Relaxation			0.2
		Argentometric Method				42	40	
8	Chloride (as Cl)	APHA 23 RD Ed,2017 : 4500Cl ⁻ B	mg/l	250	1000			41.3
	Residual, free	Iodometric Method						
9	Chlorine	APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	ND
Desi	rable Characteristic	S						
10	5	Gravimetric Method		= 00	****	192	148	470.0
10	Dissolved Solids	APHA 23 RD Ed,2017 : 2540 C	mg/l	500	2000			179.3
		EDTA Titrimetric Method				38	32	
11	Calcium (as Ca)	APHA 23 RD Ed,2017 : 3500Ca B	mg/l	75	200			35.3
	Magnesium (as	Calculation Method				10.8	10.6	
12	Mg)	APHA 23 RD Ed,2017 : 3500 gvB	mg/l	30	100			10.5
		By AAS Method				<0.05	<0.05	
13	Copper (as Cu)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	(0.05	10.03	<0.05
	Manganese (as	Persulfate Method				<0.05	<0.05	
14	Manganese (as Mn)	APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	\0.03	30.05	<0.05
		Turbidimetric Method				4.6	3.2	
15	Sulphate (as SO ₄)	APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	4.0	3.2	4.2
16	Nitrate (as NO ₃)	By UV-Screen Method	mg/l	45	No Relaxation	0.81	0.76	0.80

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

Phenolic Compounds Colorimetric Method mg/l 1 1.5 0.014	0.012 <0.001 <0.002 <0.001 <0.01 <0.05	<0.001 <0.002 <0.001 <0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.002 <0.001 <0.01 <0.01	<0.001 <0.002 <0.001 <0.01
18 Compounds (as C_6H_5OH) Colorimetric Method mg/l 0.001 0.002 <0.001 19 Mercury (as Hg) AAS Method mg/l 0.001 No Relaxation <0.002	<0.002 <0.001 <0.01 <0.01	<0.002 <0.001 <0.01
19 Mercury (as Hg) AAS Method mg/l 0.001 No Relaxation <0.002	<0.001 <0.01 <0.01	<0.001 <0.01 <0.01
Mercury (as Hg)	<0.001 <0.01 <0.01	<0.001 <0.01 <0.01
APHA 23 RD Ed,2017: 3112 Cadmium (as Cd) AAS Method APHA 23 RD Ed,2017: 3111 B By AAS Method APHA 23 RD Ed,2017: 3500 e C By AAS Method APHA 23 RD Ed,2017: 3500 e C Arsenic (as As) By AAS Method APHA 23 RD Ed,2017: 3114 B By AAS Method APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Cyanide (as CN)	<0.01	<0.001 <0.01 <0.01
20 Cadmium (as Cd) APHA 23 RD Ed,2017: 3111 B mg/l 0.003 Relaxation 21 Selenium (as Se) By AAS Method APHA 23 RD Ed,2017: 3500 e C mg/l 0.01 No Relaxation 22 Arsenic (as As) By AAS Method mg/l 0.01 No Relaxation 23 Cyanide (as CN) Distillation followed by Spectophotometric Method mg/l 0.05 Relaxation 24 O.01 No Relaxation No Relaxation 25 O.05 O.05 O.05 O.05 26 O.05 O.05 O.05 O.05 O.05 O.05 26 O.01 O.05 O.05 O.05 O.05 O.05 O.05 27 O.01 O.05 O.05	<0.01	<0.01
APHA 23 RD Ed,2017: 3111 B By AAS Method APHA 23 RD Ed,2017: 3500 e C By AAS Method APHA 23 RD Ed,2017: 3500 e C By AAS Method APHA 23 RD Ed,2017: 3114 B By AAS Method APHA 23 RD Ed,2017: 3114 B Cyanide (as CN) Distillation followed by Spectophotometric Method Distillation followed by Spectophotometric Method Melaxation Co.01 No Relaxation Co.01 No Relaxation Co.01	<0.01	<0.01
21 Selenium (as Se) APHA 23 RD Ed,2017: 3500 e C mg/l 0.01 Relaxation 22 Arsenic (as As) By AAS Method APHA 23 RD Ed,2017: 3114 B mg/l 0.01 No Relaxation 23 Cyanide (as CN) Distillation followed by Spectophotometric Method mg/l 0.05 No Relaxation	<0.01	<0.01
APHA 23 RD Ed,2017: 3500 e C By AAS Method APHA 23 RD Ed,2017: 3114 B Distillation followed by Spectophotometric Method Melaxation Cyanide (as CN) APHA 23 RD Ed,2017: 3114 B Distillation followed by Spectophotometric Method Mo Relaxation Co.01 No Relaxation APHA 23 RD Ed,2017: 3114 B Co.01 No Relaxation Co.05		<0.01
22 Arsenic (as As) APHA 23 RD Ed,2017: 3114 B Distillation followed by Spectophotometric Method mg/l 0.01 Relaxation No Spectophotometric Method mg/l 0.05 Relaxation Countries No Relaxation		
APHA 23 RD Ed,2017: 3114 B Distillation followed by Spectophotometric Method Cyanide (as CN) No Spectophotometric Method Polynotics Company Comp	<0.05	
23 Cyanide (as CN) Spectophotometric Method mg/l 0.05 No Co.05	<0.05	-0.05
		< 0.05
AF IIA 23 EU,2017. 4300 CN C,D		
By AAS Method mg/l No Relaxation < 0.01	<0.01	<0.01
By AAS Method 4	4.2	4.43
25 Zinc (as Zn) mg/l 5 15 APHA 23 RD Ed,2017: 3111		4.13
Anionic Detergents Anionic Surfactants as MBAS mg/l 0.2 ND	ND	ND
26 (as MBAS) APHA 23RD Ed,2017: 5540 C mg/l 0.2		ND
Partition-Gravimetric Method No No No	ND	ND
27 Mineral Oil APHA 23 RD Ed,2017: 5520 mg/l 0.5 Relaxation		ND
Titration Method 38	26	24.7
28 Alkalinity mg/l 200 600 APHA 23 RD Ed,2017:2320 B		34.7
AAS Method (0.001	<0.001	10.004
29 Aluminium as(Al) mg/l 0.03 0.2		<0.001
Curcumin Method <0.1	<0.1	.0.4
30 Boron (as B) mg/l 0.5 2.4		<0.1
Total Coli form as MPN Method MPN/ Shall not be detectable in		
31 TC APHA 23 RD Ed,2017 : 9221 b 100ml sample - 41.8	<1.8	<1.8

Visiontek Consultancy Services Pvt. Ltd.

HILL

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

					d as per	Analysis	Analysis	
Sl.	Parameter	Testing Method	Unit		00:2012	Result	Result	Annual
No.	Tarameter	Testing Method	Cint		2015 & 2018	DEC-20	MAR-21	Average
				Acceptable Limit	Permissible Limit	DEC-20	MAK-21	
		Esse	ntial Char	acteristics		•		
		Visual Comparison Method		-	15	<5	<5	
1	Colour	APHA 23 RD Ed,2017 : 2120 B, C	Hazen	5	15			<5
2		Threshold Odour Test				greeable	Agreeable	
2	Odour	APHA 23 RD Ed,2017 :2150 B		Agreeable	Agreeable			Agreeabl
_		Flavor Threshold Test				greeable	Agreeable	
3	Taste	APHA 23 RD Ed,2017 : 2160 C	Ī	Agreeable	Agreeable			Agreeabl
		Nephelometric Method				7.82	6.8	
4	Turbidity	APHA 23 RD Ed,2017 :2130 B	NTU	1	5			7.5
_		pH Meter			No	7.49	6.4	
5	pH Value at 25°C	APHA 23 RD Ed,2017 : 4500H ⁺ B		6.5-8.5	Relaxation			7.1
	Total Hardness	EDTA Titrimetric Method				80	192	
6	(as CaCO ₃)	APHA 23 RD Ed,2017 : 2340 C	mg/l	200	600			117.3
		By AAS Method			No	0.12	0.26	
7	Iron (as Fe)	APHA 23 RD Ed,2017 : 3111, B	mg/l	1	Relaxation	0.22	5.25	0.2
		Argentometric Method				41	42	
8	Chloride (as Cl)	APHA 23 RD Ed,2017 : 4500Cl ⁻ B	mg/l	250	1000			41.3
	Residual, free	Iodometric Method						
9	Chlorine	APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	ND
	l		Desirabl	le Characteris	tics		<u> </u>	I.
		Gravimetric Method				142	310	400.0
10	Dissolved Solids	APHA 23 RD Ed,2017 : 2540 C	mg/l	500	2000			199.3
		EDTA Titrimetric Method				30	54.8	
11	Calcium (as Ca)	APHA 23 RD Ed,2017 : 3500Ca B	mg/l	75	200			38.9
	Magnesium (as	Calculation Method				9.6	21.8	
12	Mg)	APHA 23 RD Ed,2017 : 3500 gNB	mg/l	30	100	3.0	21.0	13.5
		By AAS Method				<0.05	<0.05	
13	Copper (as Cu)	APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	\0.03	\0.03	<0.05
	Manganasa (as	Persulfate Method				<0.05	<0.05	
14	Manganese (as Mn)	APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	\0.03	30.05	<0.05
		Turbidimetric Method				3	34	
15	Sulphate (as SO ₄)	APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	3	34	13.4
		,	-	ļ	No	0.72	7.6	

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

Annexure No.-3 **Visiontek Consultancy Services Pvt. Ltd.**

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

		APHA 23 RD Ed,2017: 4500 NO ₃ -E						
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method	mg/l	1	1.5	0.013	0.21	0.08
	(APHA 23 RD Ed,2017: 4500F- C						0.00
18	Phenolic Compounds	Chloroform Extraction by Colorimetric Method	mg/l	0.001	0.002	<0.001	<0.001	<0.001
	(as C ₆ H ₅ OH)	APHA 23 RD Ed,2017: 5530 B,D						
19	Mercury (as Hg)	AAS Method	mg/l	0.001	No	<0.002	<0.002	<0.002
19	Mercury (as Fig)	APHA 23 RD Ed,2017: 3112	IIIg/I	0.001	Relaxation			\0.002
20	Cadmium (as Cd)	AAS Method	mg/l	0.003	No	<0.001	<0.001	<0.001
20	Cadimum (as Cd)	APHA 23 RD Ed,2017: 3111 B	IIIg/I	0.003	Relaxation			<0.001
21	G-1	By AAS Method	/1	0.01	No	<0.01	<0.01	10.01
21	Selenium (as Se)	APHA 23 RD Ed,2017: 3500 e C	mg/l	0.01	Relaxation			<0.01
22		By AAS Method	4	0.01	No	<0.01	<0.01	.0.04
22	Arsenic (as As)	APHA 23 RD Ed,2017: 3114 B	mg/l	0.01	Relaxation			<0.01
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method	mg/l	0.05	No	<0.05	<0.05	<0.05
		APHA 23 RD Ed,2017: 4500 CN ⁻ C,D	J		Relaxation			
24	Lead (as Pb)	By AAS Method APHA 23 RD Ed,2017 3111 B	mg/l	0.01	No Relaxation	<0.01	<0.01	<0.01
25	7. (7.)	By AAS Method	/1	_	15	4.4	<0.05	4.50
25	Zinc (as Zn)	APHA 23 RD Ed,2017: 3111	mg/l	5	15			4.50
26	Anionic Detergents	Anionic Surfactants as MBAS	4	0.2		ND	ND	
26	(as MBAS)	APHA 23RD Ed,2017: 5540 C	mg/l	0.2				ND
		Partition-Gravimetric Method			No	ND	ND	
27	Mineral Oil	APHA 23 RD Ed,2017: 5520	mg/l	0.5	Relaxation			ND
		Titration Method		•••		24	220	
28	Alkalinity	APHA 23 RD Ed,2017:2320 B	mg/l	200	600			90.0
		AAS Method				<0.001	<0.001	
29	Aluminium as(Al)	APHA 23 RD Ed,2017: 3111	mg/l	0.03	0.2			<0.001
		Curcumin Method				<0.1	<0.1	
30	Boron (as B)	APHA 23 RD Ed,2017: 4500 B	mg/l	0.5	2.4	3. <u>-</u>	3.2	<0.1
	Total Coli form as	MPN Method	MPN/	Shall not be detectable in				
31	TC	APHA 23 RD Ed,2017 : 9221 b	100ml	any 100ml sample		<1.8	<1.8	<1.8

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

8. GROUND WATER LEVEL

PERIOD: OCT-2020 TO MAR-2021

GW1: Bore well Near Workshop of the Mines

				Standa	rd as per	Analysis	Analysis		
Sl.					500:2012 n 2015 & 2018	Result	Result	Annual	
No.	Parameter	Testing Method	Unit	Acceptable Limit	Permissible Limit	DEC 20	MAD 21	Average	
						DEC-20	MAR-21		
1	Hexavalent Chromium as Cr6+	Diphenyl Carbazide Method APHA 23 RD d,2017: 3500 Cr B	mg/l	5	15	<0.05	<0.05	<0.05	

GW2: Bore well Near Main Gate of OCM

GI.				Stand	ard as per		Analysis	Analysis	
Sl.				IS -10500:2012			Result	Result	Annual
No.	Parameter	Testing Method	Unit	Amended o	on 2015 & 2018				Annual Average
				Acceptable Limit	Permissible Limit	DEC-20		MAR-21	
	Hexavalent Chromium as	Diphenyl Carbazide Metho		_					
1	Cr6+	APHA 23 RD E ,2017 : 3500 Cr B	mg/l	5	15		<0.05	<0.05	<0.05

GW3: Open well near Ostia Village

Sl.	Parameter	Testing Method	Unit		rd as per 500:2012	Analysis Result	Analysis Result	Annual
No.	1 ai ainetei	resting wiethou	Cint	Amended or	2015 & 2018			Average
				Acceptable Limit	Permissible Limit	DEC-20	MAR-21	
1	Hexavalent Chromium as Cr6+	Diphenyl Carbazide Metho APHA 23 RD E ,2017 : 3500 Cr B	mg/l	5	15	<0.05	<0.05	<0.05

GW4: Open well near Ostapal Village

Sl.					rd as per 00:2012	,	Analysis Result	Analysis Result	Annual
No.	Parameter	Testing Method	Unit	Amended on	2015 & 2018				Average
				Acceptable Limit	Permissible Limit		DEC-20	MAR-21	
1	Hexavalent Chromium as	Diphenyl Carbazide Metho	ma/1	5	15		<0.05	<0.05	<0.05
1	Cr6+	APHA 23 RD E ,2017 : 3500 Cr B	mg/l	3	15		<0.05	\0.05	<0.05

GW5: Tube well inside the shiva temple of Village Gurujanga

SI.					rd as per 00:2012		Analysis Result	Analysis Result	Annual
No.	Parameter	Testing Method	Unit	Amended on	2015 & 2018				Average
				Acceptable Limit	Permissible Limit	DEC-20		MAR-21	
1	Hexavalent Chromium as Cr6+	Diphenyl Carbazide Method APHA 23 RD Ed,2017: 3500 Cr B	mg/l	5	15		<0.05	<0.05	<0.05

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

GW6: Tubewell Outside the shiva temple of Village Guruia	nga
dvvo. Tubewell Outside the siliva temple of village duruja	IIIga

Sl. No.	Parameter	Testing Method	Unit		rd as per 500:2012	Analysis Analysis Result Result		Annual
				Amended or	n 2015 & 2018	DEG 40	3515.61	Average
				Acceptable Limit	Permissible Limit	DEC-20	MAR-21	
1	Hexavalent Chromium as	Diphenyl Carbazide Method	/1	_	15	40.05	40.05	40.05
1	Cr6+	Cr6+ APHA 23 RD d,2017 : mg/l 3500 Cr B		5	15	<0.05	<0.05	<0.05

GW7: Eastern Side of the Quarry (Pz-1)

Sl. No.	Parameter	Testing Method	Unit	Standard as per IS -10500:2012			Analysis Result	Analysis Result	Annual
				Amended or	n 2015 & 2018		DEG 44	Result MAR-21	Average
				Acceptable Limit	Permissible Limit		DEC-20	MAR-21	
1	Hexavalent Chromium as Cr6+	Diphenyl Carbazide Method APHA 23 RD d,2017 : 3500 Cr B	mg/l	5	15		<0.05	<0.05	<0.05

GW8: Southern Side of the Quarry (Pz-2)

Sl. No.	Parameter	Testing Method	Unit		Standard as per IS -10500:2012		Analysis Result	Analysis Result	Annual
				Amended or	n 2015 & 2018		DEG 40	35.5	Average
				Acceptable Limit	Permissible Limit		DEC-20	MAR-21	
	Hexavalent Chromium as	Diphenyl Carbazide Method	/1		15		.0.05	-0.05	.0.05
1	Cr6+	APHA 23 RD d,2017 : 2120 B, C	mg/l 5		15		<0.05	<0.05	<0.05

GW9: Western Side of the Quarry (Pz-3)

Sl. No.	Parameter	Testing Method	Unit	Standard as per IS -10500:2012		Analysis Result	Analysis Result	Annual	
		G	Acceptable		Permissible	DEC-20	MAR-21	Average	
				Limit	Limit				
1	Hexavalent Chromium as	Diphenyl Carbazide Method APHA 23 RD Ed,2017 : 3500 Cr B	mg/l	5	15	<0.05	<0.05	<0.05	

Puja Makarly

Approved By

ANNEXURE NO.-5

GROUND WATER ABSTRACTION & SUPPLY TO NEARBY VILLAGES

GROUND WATER ABSTRACTION DATA FROM ABSTRACTION STRUCTURE FOR THE YEAR 2020-21 OSTAPAL CHROMITE MINES,M/s FACORL TD

	E	Bore Well -:	1		Bore well -	-2		
Month	Initial Reading	Final Reading	A.Total withdraw al (In KL)	Initial Reading	Final Reading	B.Total withdrawal (In KL)	TOTAL Withdrawal (A+B) in KL	Avg. Withdrawal Per day in KL
April'20	63061	64500	1439	73940	75025	1085	2524	84.13
May'20	64500	65880	1380	75025	76044	1019	2399	77.39
June'20	65880	67217	1337	76044	77064	1020	2357	78.57
July'20	67217	68321	1104	77064	77999	935	2039	65.77
Aug'20	68321	69178	857	77999	78099	100	957	30.87
Sept'20	69178	70063	885	78099	79037	938	1823	60.77
Oct'20	70063	71010	947	79037	80225	1188	2135	68.87
Nov'20	71010	72325	1315	80225	81400	1175	2490	83.00
Dec'20	72325	73751	1426	81400	82505	1105	2531	81.65
Jan'21	73751	75280	1529	82505	83668	1163	2692	86.84
Feb'21	75280	76685	1405	83668	84695	1027	2432	78.45
Mar'21	76685	78488	1803	84695	85868	1173	2976	96.00
	TOTAL 15427			TO	TOTAL 11928			892.31
			Avg. wit	hdrawal pe	er day is 74.	35 KL		

ANNEXURE N0.-6

Regional Director

File No: - 21-4/1456/OR/MIN/2017 - 1735

NOC No: - CGWA/NOC/MIN/ORIG/2018/3957

भारत सरकार केन्द्रीय भूमि जल प्राधिकरण जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

Government of India
Central Ground Water Authority
Ministry of Water Resources,
River Development & Ganga Rejuvenation

Date:- 28 AUG 2018

To

M/s Facor Ltd.
Ostapal Chromite Mines
Village Gurujanga, Block Sukinda,
District Jajapur, Odisha – 755028

Sub: - NOC for ground water withdrawal to M/s Facor Ltd. in respect of their existing "Ostapal Chromite Mines" located at Village Gurujanga, Block Sukinda, District Jajapur, Odisha – reg.

Refer to your application for grant of NOC for ground water withdrawal dated 28/08/2017. Based on recommendations of Regional Director, Central Ground Water Board, Central Ground Water Board, South Eastern Region, Bhubaneswar vide his letter dated 17/06/2018 and further deliberations on the subject, the NOC of Central Ground Water Authority for ground water withdrawal is hereby accorded to M/s Facor Ltd. in respect of their existing "Ostapal Chromite Mines" located at Village Gurujanga, Block Sukinda, District Jajapur, Odisha. The NOC is valid from 02/08/2018 to 01/08/2020 and is subject to the following conditions:-

- 1. The firm may abstract 100 cu.m/day of ground water (and not exceeding 36,500 cu.m/year) through two (2) existing bore wells and 3,300 cu.m/day (not exceeding 12,04,500 cu.m/year) through dewatering mine seepage through two (2) existing mine pits on account of mining intersecting the water table. The total withdrawal should not exceed 3,400 cu.m/day (not exceeding 12,41,000 cu.m/year). No additional dewatering and ground water abstraction structure shall be constructed for this purpose without prior approval of the CGWA. Any unexpected variation in inflow of ground water into the mine pit should be reported to the concerned Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar.
- Both the wells as well as dewatering structures shall be fitted with digital water meters by the firm at its own cost and monitoring of monthly ground water abstraction data of each ground water abstraction structures shall be recorded in a log book. Compliance to this condition shall be reported within one month from the date of issue of this letter.
- 3. M/s Facor Ltd, Ostapal Chromite Mines, in consultation with the Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar shall implement ground water recharge measures atleast to the tune of 23,630 cu.m/year as proposed, for augmenting the ground water resources of the areas where post monsoon water level is more than 5 meter below ground level. Firm shall report the compliance within six months from the date of issuance of this letter. Firm shall also undertake periodic maintenance of recharge structures at its own cost.
- The photographs of the recharge structures after completion of construction of the same shall be furnished immediately to the Regional Director, Central Ground Water

18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743

Website: www.cgwa.noc.gov.in स्वच्छ सुरक्षित जल - सुन्दर खुशहाल कल

CONSERVE WATER - SAVE LIFE

- Board, South Eastern Region, Bhubaneswar for verification under intimation to this office.
- 5. The firm, at its own cost, shall construct four (4) observation wells (piezometers) at suitable locations and install digital water level recorders along the periphery of the mine for monthly ground water level monitoring. Further, the firm shall execute ground water level monitoring four (4) times a year (January, May, August and November) in core and buffer zone by establishing sufficient number of key wells in consultation with the Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar. Firm shall install telemetry system on one of the piezometer and share the user ID and password of the telemetry system with the Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar.
- The ground water quality shall be monitored once in a year (during pre monsoon period).
- The monitoring data in respect of S. No. 2, 5 & 6 shall be submitted to the Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar on regular basis at least once in a year.
- The firm shall ensure proper recycling and reuse of waste water after adequate treatment.
- Action taken report in respect of S. No. 1 to 8 shall be submitted to CGWA within one year period.
- 10. The NOC is liable to be cancelled in case of non-compliance of any of the conditions as mentioned in S. No. 1 to 9.
- 11. This NOC is subject to prevailing Central/State Government rules/laws or Court orders related to construction of tubewell/ground water withdrawal/construction of recharge or conservation structure/discharge of effluents or any such matter as applicable.
- The firm shall report self compliance online in the website (<u>www.cgwa-noc.gov.in</u>) within one year from the date of issue of this NOC.
- 13. This NOC does not absolve the applicant / proponent of this obligation / requirement to obtain other statutory and administrative clearances from other statutory and administrative authorities.
- 14. The NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on merits and be taking decisions independently of the NOC.

Regional Director

Copy to:

- The Member Secretary, Odisha Pollution Control Board, Paribesh Bhawan, A/118, Nilakantha Nagar, Unit- VIII, Bhubaneswar- 751012, Odisha with a request to ensure that the conditions mentioned in the NOC are complied by the firm in consultation with the District Collector & Magistrate, District Jajapur, Odisha.
- The District Collector & Magistrate, District Jajapur, Odisha for necessary action.
- The Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar. This has reference to your recommendation dated 17/06/2018.

Guard File 2018-19.

Regional Director

CONSENT ORDER OSTAPAL CHROMITE MINES OF M/S. FACOR LTD.

Page 1 of 12

BY REGD. POST WITH AD

STATE POLLUTION CONTROL BOARD, ODISHA

A/118, Nilakantha Nagar, Unit-VIII, Bhubaneswar-751012 Phone-2561909, Fax: 2562822, 2560955

CONSENT ORDER

No. 5320

/ IND-I-CON- 1163

Dt. 27.03.2021

CONSENT ORDER NO. 366

Sub: Consent for discharge of sewage and trade effluent under section 25/26 of Water (PCP) Act, 1974 and for existing / new operation of the plant under section 21 of

Air (PCP) Act, 1981.

Ref: Your online application No. 3216555 dated 28-11-2020 and Online reply dated

30.12.2020

Consent to operate is hereby granted under section 25/26 of Water (Prevention & Control of Pollution) Act, 1974 and under section 21 of Air (Prevention & Control of Pollution) Act, 1981 and rules framed thereunder to

Name of the Industry: OSTAPAL CHROMITE MINES OF M/S. FACOR LTD.

Name of the Occupier & Designation: SRI SAUVICK MAZUMDAR, DIRECTOR

Address: AT: GURUJANG, PO: KALIAPANI, DIST: JAJPUR

This consent order is valid for the period up to 31.03.2022 from the date of issue of this order.

This consent order supersedes the earlier consent order issued vide letter No. 2430 dated 5.02.2016.

Details of Products Manufactured

SI. No	Product	Quantity
01.	Chrome ore(ROM)	0.2 MTPA

Details of Mineral Handing Plants/Units

01.	Operation of COB Plant of capacity	0.1 MTPA (chrome ore concentrate)

This consent order is valid for the specified outlets, discharge quantity and quality, specified chimney/stack, emission quantity and quality of emissions as specified below. This consent is granted subject to the general and special conditions stipulated therein.

CONSENT ORDER OSTAPAL CHROMITE MINES OF M/S. FACOR LTD.

A. Discharge permitted through the following outlet subject to the standard

Outlet	Description	Point of	Quantity	Pre-scribed Standard						
No.	. 0,000.00	discharge KL/hr	рН	TSS (mg/l)	BOD (mg/l)		Oil & Grease (mg/l)	Cr+6 (mg/l)	Total Chromium (mg/l)	
01.	Septic tank (Domestic effluent)	Soak pit		5.5 to 9.0	200	100			**	
02.	Mine drainage water / surface run off/ other wastewater	On land / inland surface water body	5205.09 KLD(Max.)	5.5 to 9.0	100			10	0.05	2.0

B. Emission permitted through the following stack subject to the prescribed standard

Chimney Stack No.	Description of Stack	Stack height (m)	Quantity of emission	Prescribed Standard		

C. Disposal of solid waste permitted in the following manner

SI. No.	Type of Solid waste	Quantity generated (TPD)	Quantity to be reused on site(TPD)	Quantity to be reused off site(TPD)	Quantity disposed off (TPD)	Description of disposal site.
01.	Top soil / overbur den	As per approved mining plan				As per approved mining plan

CONSENT ORDER

OSTAPAL CHROMITE MINES OF M/S. FACOR LTD.

D. GENERAL CONDITIONS FOR ALL UNITS

- 1. The consent is given by the Board in consideration of the particulars given in the application. Any change or alternation or deviation made in actual practice from the particulars furnished in the application will also be the ground liable for review/variation/revocation of the consent order under section 27 of the Act of Water (Prevention & Control of Pollution) Act, 1974 and section 21 of Air (Prevention & Control of Pollution) Act, 1981 and to make such variations *s deemed fit for the purpose of the Acts.
- The industry would immediately submit revised application for consent to operate to this Board in the event of any change in the quantity and quality of raw material / and products / manufacturing process or quantity /quality of the effluent rate of emission / air pollution control equipment / system etc.
- The applicant shall not change or alter either the quality or quantity or the rate of discharge or temperature or the route of discharge without the
 previous written permission of the Board.
- 4. The application shall comply with and carry out the directives/orders issued by the Board in this consent order and at all subsequent times without any negligence on his part. . In case of non-compliance of any order/directives issued at any time and/or violation of the terms and conditions of this consent order, the applicant shall be liable for legal action as per the provisions of the Law/Act.
- 5. The applicant shall make an application for grant of fresh consent at least 90 days before the date of expiry of this consent order.
- 6. The issuance of this consent does not convey any property right in either real or personal property or any exclusive privileges nor does it authorize any injury to private property or any invasion of personal rights, nor any infringement of Central, State laws or regulation.
- This consent does not authorize or approve the construction of any physical structure or facilities or the undertaking of any work in any natural water course.
- 8. The applicant shall display this consent granted to him in a prominent place for perusal of the public and inspecting officers of this Board.
- 9. An inspection book shall be opened and made available to Board's Officers during the visit to the factory.
- 10. The applicant shall furnish to the visiting officer of the Board any information regarding the construction, installation or operation of the plant or of effluent treatment system / air pollution control system / stack monitoring system any other particulars as may be pertinent to preventing and controlling pollution of Water / Air.
- 11. Meters must be affixed at the entrance of the water supply connection so that such meters are easily accessible for inspection and maintenance and for other purposes of the Act provided that the place where it is affixed shall in no case be at a point before which water has been taped by the consumer for utilization for any purposes whatsoever.
- 12. Separate meters with necessary pipe-line for assessing the quantity of water used for each of the purposes mentioned below:
 - a) Industrial cooling, spraying in mine pits or boiler feed,
 - b) Domestic purpose
 - c) Process
- 13. The applicant shall display suitable caution board at the lace where the effluent is entering into any water-body or any other place to be indicated by the Board, indicating therein that the area into which the effluents are being discharged is not fit for the domestic use/bathing.
- 14. Storm water shall not be allowed to mix with the trade and/or domestic effluent on the upstream of the terminal manholes where the flow measuring devices will be installed.
- 15. The applicant shall maintain good house-keeping both within the factory and the premises. All pipes, valves, sewers and drains shall be leak-proof. Floor washing shall be admitted into the effluent collection system only and shall not be allowed to find their way in storm drains or open areas.
- 16. The applicant shall at all times maintain in good working order and operate as efficiently as possible all treatment or control facilities or systems install or used by him to achieve with the term(s) and conditions of the consent.
- 17. Care should be taken to keep the anaerobic lagoons, if any, biologically active and not utilized as mere stagnation ponds. The anaerobic lagoons should be fed with the required nutrients for effective digestion. Lagoons should be constructed with sides and bottom made impervious.
- 18. The utilization of treated effluent on factory's own land, if any, should be completed and there should be no possibility of the effluent gaining access into any drainage channel or other water courses either directly or by overflow.
- 19. The effluent disposal on land, if any, should be done without creating any nuisance to the surroundings or inundation of the lands at any time.
- 20. If at any time the disposal of treated effluent on land becomes incomplete or unsatisfactory or create any problem or becomes a matter of dispute, the industry must adopt alternate satisfactory treatment and disposal measures.
- 21. The sludge from treatment units shall be dried in sludge drying beds and the drained liquid shall be taken to equalization tank.
- 22. The effluent treatment units and disposal measures shall become operative at the time of commencement of production.
- 23. The applicant shall provide port holes for sampling the emissions and access platform for carrying out stack sampling and provide electrical outlet points and other arrangements for chimneys/stacks and other sources of emissions so as to collect samples of emission by the Board or the applicant at any time in accordance with the provision of the Act or Rules made therein.
- 24. The applicant shall provide all facilities and render required assistance to the Board staff for collection of samples / stack monitoring / inspection.

- The applicant shall not change or alter either the quality or quantity or rate of emission or install, replace or alter the air pollution control equipment or change the raw material or manufacturing process resulting in any change in quality and/or quantity of emissions, without the previous written 25.
- No control equipments or chimney shall be altered or replaced or as the case may be erected or re-erected except with the previous approval of the 26. Board.
- The liquid effluent arising out of the operation of the air pollution control equipment shall to treated in the manner and to ion of standards prescribed by the Board in accordance with the provisions of Water (Prevention and Control of Pollution) Act, 1974 (as amended). 27.
- The stack monitoring system employed by the applicant shall be opened for inspection to this Board at any time. 28.
- There shall not be any fugitive or episodal discharge from the premises. 29
- In case of such episodal discharge/emissions the industry shall take immediate action to bring down the emission within the limits prescribed by the Board in conditions/stop the operation of the plant. Report of such accidental discharge /emission shall be brought to the notice of the Board within 24 30. hours of occurrence.
- The applicant shall keep the premises of the industrial plant and air pollution control equipments clean and make all hoods, pipes, valves, stacks/chimneys leak proof. The air pollution control equipments, location, inspection chambers, sampling port holes shall be made easily accessible 31. at all times.
- Any upset condition in any of the plant/plants of the factory which is likely to result in increased effluent discharge/emission of air pollutants and / or result in violation of the standards mentioned above shall be reported to the Headquarters and Regional Office of the Board by fax / speed post within 32 24 hours of its occurence.
- The industry has to ensure that minimum three varieties of trees are planted at the density of not less than 1000 trees per acre. The trees may be planted along boundaries of the industries or industrial premises. This plantation is stipulated over and above the bulk plantation of trees in that area. 33.
- The solid waste such as sweeping, wastage packages, empty containers residues, sludge including that from air pollution control equipments collected within the premises of the industrial plants shall be disposed off scientifically to the satisfaction of the Board, so as no to cause fugitive emission, dust 34. problems through leaching etc., of any kind.
- All solid wastes arising in the premises shall be properly classified and disposed off to the satisfaction of the Board by 35.
 - Land fill in case of inert material, care being taken to ensure that the material does not give rise to leachate which may percolate into i) ground water or carried away with storm run-off.
 - Controlled incineration, wherever possible in case of combustible organic material.
 - Composting, in case of bio-degradable material.
- Any toxic material shall be detoxicated if possible, otherwise be sealed in steel drums and buried in protected areas after obtaining approval of this Board in writing. The detoxication or sealing and burying shall be carried out in the presence of Board's authorized persons only. Letter of authorization shall be obtained for handling and disposal of hazardous wastes. 36.
- If due to any technological improvement or otherwise this Board is of opinion that all or any of the conditions referred to above requires variation (including the change of any control equipment either in whole or in part) this Board shall after giving the applicant an opportunity of being heard, vary 37. all or any of such condition and thereupon the applicant shall be bound to comply with the conditions so varied.
- The applicant, his/heirs/legal representatives or assignees shall have no claim whatsoever to the condition or renewal of this consent after the expiry 38. period of this consent.
- The Board reserves the right to review, impose additional conditions or condition, revoke change or alter the terms and conditions of this consent. 39.
- Notwithstanding anything contained in this conditional letter of consent, the Board hereby reserves to it the right and power under section 27(2) of the Water (Prevention & Control of Pollution) Act, 1974 to review any and/or all the conditions imposed herein above and to make such variations as 40 deemed fit for the purpose of the Act by the Board.
- The conditions imposed as above shall continue to be in force until revoked under section 27(2) of the Water (Prevention & Control of Pollution) Act, 41. 1974 and section 21 A of Air (Prevention & Control of Pollution) Act, 1981.
- In case the consent fee is revised upward during this period, the industry shall pay the differential fees to the Board (for the remaining years) to keep the consent order in force. If they fail to pay the amount within the period stipulated by the Board the consent order will be revoked without prior notice. 42
- The Board reserves the right to revoke/refuse consent to operate at any time during period for which consent is granted in case any violation is 43. observed and to modify/ stipulate additional conditions as deemed appropriate.

GENERAL CONDITIONS FOR UNITS WITH INVESTMENT OF MORE THAN Rs 50 CRORES, AND 17 CATEGORIES OF HIGHLY POLLUTING INDUSTRIES (RED A).

- The applicant shall analyse the emissions every month for the parameters indicated in TABLE .B & C as mentioned in this order and shall furnish 1. the report thereof to the Board by the 10th of the succeeding month.
- The applicant shall provide and maintain at his own cost three ambient air quality monitoring stations for monitoring Suspended Particulate Matter, Sulphor Dioxide, Oxides of Nitrogen, Hydro-Carbon, Carbon-Monixide and monitor the same once in a day/week/fortnight/month. The 2. data collected shall be maintained in a register and a monthly extract be furnished to the Board.

- The applicant shall provide and maintain at his own cost a meteorological station to collect the data on wind velocity, direction, temperature, humidity, rainfall, etc. and the daily reading shall be recorded and the extract sent to the Board once in a month.
- The applicant shall forward the following information to the Member Secretary, State Pollution Control Board, Odisha, Bhubaneswar regularly. 4.
 - Report of analysis of stack monitoring, ambient air quality monitoring meteorological data as required every month.
 - Progress on planting of trees quarterly.
- The applicant shall install mechanical composite sampling equipment and continuous flow measuring / recording devices on the effluent drains of 5. trade as well as domestic effluent. A record of daily discharge shall be maintained.
- The following information shall be forwarded to the Member Secretary on or before 10th of every month.
 - Performance / progress of the treatment plant.
 - a. b. Monthly statement of daily discharge of domestic and/or trade effluent.

Non-compliance with effluent limitations

- If for any reason the applicant does not comply with or is unable to comply with any effluent limitations specified in this consent, the a) applicant shall immediately notify the consent issuing authority by telephone and provide the consent issuing authority with the following information in writing within 5 days of such notification.
 - Causes of non-compliance i)
 - A description of the non-compliance discharge including its impact on the receiving waters. i)
 - Anticipated time of continuance of non-compliance if expected to continue or if such condition has been corrected the duration ii) or period of non-compliance
 - Steps taken by the applicant to reduce and eliminate the non-complying discharge and iii)
 - Steps to be taken by the applicant too prevent the condition of non-compliance. iv)
- The applicant shall take all reasonable steps to minimize any adverse impact to natural waters resulting from non-compliance with any effluent limitation specified in this consent including such accelerated or additional monitoring as necessary to determine the nature and b) impact of the non-complying discharge.
- Nothing in this consent shall be construed to relieve the applicant from civil or criminal penalties for non-compliance whether or not such c) non-compliance is due to factors beyond his control, such as break-down, electric failure, accident or natural disaster.
- The applicant shall at his own cost get the effluent samples collected both before and after treatment and get them analysed at an approval laboratory every month for the parameters indicated in Part-D and shall submit in duplicate the report thereof to the Board.
- The addition of various treatment chemicals should be done only with mechanical dosers and proper equipment for regulation of correct dosages determined daily and for proper uniform feeding. Crude practices such as dumping of chemicals in drains or sumps or trickling of acids or alkalies arbitrarily and utilizing poles for stirring etc. should not be resorted to. 9
- In the disposal of treated effluent on land for irrigation, the industry shall keep in view of the need for; 10.

Rotation of crops

Change of point of application of effluent on land

A portion of land kept fallow.

- The adoption of these would avoid soil becoming sick or slate, the industry may ensure this in consultation with the Agriculture Department. 11.
- It is the sole responsibility of the industry to ensure that there are no complaints at any time from the royats in the surrounding areas as a result of 12. discharge of sewage or trade effluent if any.
- Proper housekeeping shall be maintained by a dedicated team. 13.
- The industry must constitute a team of responsible and technically qualified personnel who will ensure continuous operation of all pollution control 14. devices round the clock (including night hours) and should be in a position to explain the status of operation of the pollution control measures to the inspecting officers of the Board at any point of time. The name of these persons with their contact telephone numbers shall be intimated to the concerned. Regional Officer and Head Office of the Board and in case of any change in the team it shall be intimated to the Board immediately.

E. SPECIAL CONDITIONS:

- Mining operation is subject to availability of all other statutory clearances required under relevant Acts/Rules.
- Wet drilling shall be practiced or suitably designed dust extractor shall be provided for dry drilling to prevent generation of dust.
- Pre-wetting of blasting site and controlled blasting shall be practiced.
- 4. Water sprinkling through mobile water tankers / fixed sprinklers shall be carried out at the desired intervals on mine haulage roads to keep the roads in wet condition so as to prevent generation of fugitive dust. The vehicles carrying ore for transportation from the mine shall be covered with tarpaulin (both bottom & top).
- Regular water sprinkling on mineral transportation roads passing through the habitation area as well as other strategic point on the National Highway shall be done jointly by the mining lessees in consultation with the Regional Officer.
- All mine haulage roads and other transportation roads shall be maintained properly to avoid creation of ruts and pot holes.
- Mechanized wheel washing facility for the ore transport vehicles shall be provided at the exit point of the mine. The wheel washing facility shall be integrated with complete recirculation system.
- 8. Regular monitoring of ambient air quality shall be carried out at the appropriate places (four places) and monitoring report shall be furnished to the Board once in six months. The permanent monitoring stations shall be fixed in consultation with the Regional Officer of the Board.
- 9. Ambient air quality of the mine shall meet the prescribed standards for industrial area.
- Overburden / waste rock shall be properly stacked in the earmarked areas approved by IBM and shall be suitably terraced and stabilized through vegetative cover or otherwise.
- 11. Retention wall shall be constructed at the toe of OB dump & mineral stockyard. The runoff from OB, ore stack yard and other areas of the mine shall be diverted to the ETP. Garland drains, channels and sedimentation pits constructed for the purpose shall be desilted as and when required and after monsoon.
- Mine drainage water shall be used for wet beneficiation of sub-grade ore. Excess water if any, shall be discharged into surface water body after adequate treatment in the ETP.

- The treated wastewater of ETP shall also be utilized for sprinkling activities at various sources of generation of dust.
- 13. The ETP, online continuous monitoring system at the inlet & outlet of ETP with data transfer facility to SPCB server shall be effectively operated and the quality of treated wastewater shall not exceed the prescribed standards(Part A, Sl. No. 2). The online continuous monitoring system shall be properly maintained and calibrated from time to time to ensure that spurious data are not transmitted to the SPCB server and correct data shall be transmitted continuously to the SPCB server.
- 14. Wastewater generated from the ore beneficiation plant shall be completely reused.
- 15. The slime generated from the ore beneficiation plant shall be disposed of safely as per mining plan and action shall be taken to prevent the contamination of ground water due to its disposal.
- 16. Domestic effluents shall be treated in a sewage treatment plant (STP) and or shall be discharged to soak pit via septic tank constructed as BIS specification. The treated wastewater quality of STP shall remain within the following standards and shall be used for plantation:

pH - 6.5 -9.0 TSS - <100 mg/l BOD - 30 mg/l

Fecal Coliform - <1000 MPN/100 ml

- 17. Oil and grease trap with sedimentation pit shall be provided for treatment of workshop effluent and treated effluent shall remain within the prescribed standards. Efforts shall be made to reuse the treated wastewater from the workshop.
- 18. Seasonal monitoring of ground water level and its quality shall be carried out four times a year and report shall be submitted to the Board.
- 19. Adequate measures shall be taken for control of noise levels below the following limits.

(6.00 AM - 9.00 PM) - Leq 75 dB(A) (9.00PM - 6.00 AM) - Leq 70 dB(A)

20. Ambient Air Quality monitoring data, Noise Monitoring data & Water/Waste Water Quality Monitoring data shall be electronically displayed at the entry point of the mine or at a suitable location of the mine.

- 21. Plantation of trees shall be undertaken in the colony/ township, over top soil dumps, OB dumps, back filled areas, along the side of haul road and in other areas of the mines not being utilized for mining activities. The mine shall take up avenue plantation and plantation in nearby village areas in consultation with DFO/Horticulture Department. The plantation details shall be submitted to the Board before end of April every year.
- A copy of the annual return (annual return submitted to IBM, Govt. of India/ Directorate
 of Mines, Govt. of Odisha) shall be submitted to the Board every year.
- 23. The environmental statement report for the financial year ending 31st March shall be submitted to the Board in form-V on or before 30th September every year
- 24. The mine shall submit a declaration by 30th April every year that all pollution control systems are in good condition, are operated efficiently and ambient air quality as well as wastewater quality are conforming to the prescribed standards.

MEMBER SECRETARY
STATE POLLUTION CONTROL BOARD, ODISHA

TO.

THE DIRECTOR,
OSTAPAL CHROMITE MINES OF M/S. FACOR LIMITED,
AT: GURUJANGA, PO: KALIAPANI, DIST: JAJPUR
PIN- 755028.

Memo No.	/Dt
0 (1.11	

Copy forwarded to:

i) Regional Officer, State Pollution Control Board, Kalinganagar.

ii) District Collector, Jajpur

iii) Director of Mines, Govt. of Odisha, Bhubaneswar,

iv) Director, Environment -cum-Special Secretary, F & E. Dept. Govt. of Odisha, Bhubaneswar.

v) D.F.O, Cuttack

vi) Deputy Director of Mines, Jajpur Road

vii) Chief. Env. Engineer (Hazardous waste management cell)

viii) Chief Env. Scientist, Central Lab. SPCB, Bhubaneswar

ix) Consent Register

CHIEF ENV. ENGINEER (M)
STATE POLLUTION CONTROL BOARD, ODISHA

GENERAL STANDARDS FOR DISCHARGE OF ENVIRONMENTAL POLLUTANTS

GENERAL STANDARDS FOR DISCHARGE OF ENVIRONMENTAL POLLUTANTS PART -A : EFFLUENTS

SI.No.	Parameters			Standards			
J 10.		Inland surface	Public sewers	Land for irrigation	Marine Costal Areas		
		(a)	(b)	(c)	(d)		
	Colour & odour	Colourless/Odou rless as far as practible		See 6 of Annex-1	See 6 of Annex-1		
2.	Suspended Solids (mg/l)	100	600	200	For process wastewater – 100 b. For cooling water effluent 10% above total suspended matter of influent.		
3.	Particular size of SS	Shall pass 850					
5.	pH value	5.5 to 9.0	5.5 to 9.0	5.5 to 9.0	5.5 to 9.0		
6.	Temperature	Shall not exceed 5°C above the receiving water temperature			Shall not exceed 5°C above the receiving water temperature		
7.	Oil & Grease mg/l max.	10	20	10	20		
8.	Total residual chlorine	1.0			1.0		
9.	Ammonical nitrogen (as N) mg/l max.	50	50		50		
10.	Total Kajeldahl nitrogen (as NH ₃) mg/1 max.	100			100		
11.	Free ammonia (as NH ₃) mg/1 max.	5.0			5.0		
12.	Biochemical Oxygen Demand (5 days at (20°C) mg/1 max.	30	350	100	100		
13.	Chemical Oxygen Demand, mg/1 max.	250			250		
14.	Arsenic (as As) mg/1 max.	0.2	0.2	0.2	0.2		
15.	Mercury (as Hg) mg/1 max.	0.01	0.01		0.001		
16.	Lead (as pb) mg/1 max	01.	1.0		2.0		

17.	Cardmium (as Cd) mg/1 max.	2.0	1.0	; 	2.0
18.	Hexavalent Chromium (as Cr + 6) mg/l max.	0.1	2.0		1.0
19.	Total Chromium (as Cr) mg/l max.	2.0	2.0		2.0
20.	Copper (as Cu) mg/l max.	3.0	3.0		3.0
21.	Zinc (as Zn) mg/l max.	5.0	15		15
22.	Selenium (as Sc) mg/l max.	0.05	0.05		0.05
23.	Nickel (as Nil) mg/l max.	3.0	3.0		5.0
24.	Cyanide (as CN) mg/l max.	0.2	2.0	0.2	0.02
25.	Fluoride (as F) mg/l max.	2.0	15		15
26.	Dissolved Phosphates (as P) mg/l max.	5.0	****		
27.	Sulphide (as S) mg/l max.	2.0			5.0
28.	Phennolic compounds as (C ₆ H ₅ OH) mg/l max.	1.0	5.0		5.0
29.	Radioactive materials a. Alpha emitter	10 ⁷	10 ⁷	10 ⁸	10 ⁷
	micro curle/ml. b. Beta emitter micro curle/ml.	10 ⁶	10 ⁶	10 ⁷	10 ⁶
30.	Bio-assay test	90% survival of fish after 96 hours in 100% effluent	90% survival of fish after 96 hours in 100% effluent	90% survival of fish after 96 hours in 100% effluent	90% survival of fish after 96 hours in 100% effluent
31	Manganese (as Mn)	2 mg/l	2 mg/l		2 mg/l
32.	Iron (Fe)	3 mg/l	3 mg/l		3 mg/l
33.	Vanadium (as V)	0.2 mg/l	0.2 mg/l		0.2 mg/l
34.	Nitrate Nitrogen	10 mg/l			20 mg/l

NATIONAL AMBIENT AIR QUALITY STANDARDS

SI.	Pollutants	Time		Concentrate of	f Ambient Air
No.		Weighed Average	Industrial Residential, Rural and other Area	Ecologically Sensitive Area (notified by Central Government)	Methods of Measurement
(1)	(2)	(3)	(4)	(5)	(6)
1.	Sulphur Dioxide (SO ₂), µg/m ³	Annual *	50	20	-Improved west and Gaeke
	F9	24 Hours **	80	80	- Ultraviolet fluorescence
2.	Nitrogen Dioxide (NO ₂), μg/m ³	Annual *	40	30	- Modified Jacob & Hochheiser (Na-Arsenite)
		24 Hours **	80	80	- Chemiluminescence -Gravimetric
3.	Particulate Matter (size less than 10μm)	Annual *	60	60	- TOEM - Beta Attenuation
	or PM ₁₀ μg/m ³	24 Hours **	100	100	
4.	Particulate Matter (size less than 2.5μm)	Annual *	40	40	-Gravimetric - TOEM
	or PM _{2.5} μg/m ³	24 Hours **	60	60	- Beta Attenuation
5.	Ozone (O ₃) μg/m ³	8 Hours **	100	100	- UV Photometric - Chemiluminescence
		1 Hours **	180	180	- Chemical Method
6.	Lead (Pb) μg/m ³	Annual *	0.50	0.50	-AAS/ICP method after sampling on EMP 2000 or equivalent filter
		24 Hours **	1.0	1.0	paper ED-XRF using Teflon filter
7.	Carbon Monoxide (CO) mg/m ³	8 Hours **	02	02	- Non Dispersive Infra Red (NDIR)
	(00)g	1 Hours **	04	04	Spectroscopy
8.	Ammonia (NH ₃) μg/m ³	Annual*	100	100	-Chemiluminescence - Indophenol Blue Method
		24 Hours**	400	400	
9.	Benzene (C ₆ H ₆) μg/m ³	Annul *	05	05	-Gas Chromatography based continuous analyzer - Adsorption and Desorption followed by GC analysis
10.	Benzo (a) Pyrene (BaP)-Particulate phase only, ng/m³	Annual*	01	01	-Solvent extraction followed by HPLC/GC analysis
11.	Arsenic (As), ng/m³	Annual*	06	06	 -AAS/ICP method after sampling on EPM 2000 or equivalent filter paper
12.	Nickel (Ni),ng/m ³	Annual*	20	20	 -AAS/ICP method after sampling on EPM 2000 or equivalent filter paper

^{**} Annual arithmetic mean of minimum I04 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

^{** 24} hourly or 08 hourly or 0I hourly monitored values, as applicable, shall be complied with 98% of the time in a year, 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

ANNEXURE NO.-8

CALENDAR PLAN INCLUDING PRODUCTION & EXCAVATION FOR THE YEAR 2020-2021

ITEM	TARGET FY 2020-21	ACHIEVEMENT FY 2020-21
ORE	97600	97577.774
OVERBURDEN	261000.00	286566.00

Annexure No.-9

Visiontek Consultancy Services Pvt. Ltd.

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

				Al	/IBIENT AIF	R QUALITY	(CORE ZO	NE)	
AAQ1: Near I	Dispensary	,							
Parameters	arameters Unit CPCB AAQ Standard 2009		Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Annual Avg
PM ₁₀	μg/m³	100	7.8	66 .6	83.2	79.4	76.8	77.2	70.4
PM _{2.5}	μg/m³	60	43.7	38.8	48.8	48.8	48.2	50.6	46.9
SO2	μg/m³	80	10.2	9.4	10.8	11.8	11.2	11.6	10.4
NOX	μg/m³	80	14.2	13.8	14.4	14.8	14.2	14.8	14.2
СО	mg/m³	4	1.2	1.1	1.31	1.28	1.22	1.26	1.2
03	μg/m³	100	4.6	4.8	4.6	5.6	5.2	5.6	4.8
NH3	μg/m³	400	21.2	20.8	22.4	22.1	21.8	22.6	21.6
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Parameters	Unit	CPCB AAQ Standard 2009	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Annual Avg
PM ₁₀	μg/m³	100	74.2	68	48.8	48.2	46.8	48.8	57.5
PM _{2.5}	μg/m³	60	46.4	40.2	19.6	21.6	20.8	22.4	31.0
SO2	μg/m³	80	10.6	9.6	11.8	12.4	11.6	12.8	11.0
NOX	μg/m³	80	14.8	13.2	5.6	6.8	6.2	6.8	8.1
СО	mg/m³	4	1.2	.0	1.26	1.24	1.18	1.22	1.2
03	μg/m³	100	5.2	5.1	4.2	4.8	4.6	4.8	4.6
NH3	μg/m³	400	21.8	21.2	21.2	21.4	20.6	21.2	21.0
Pb	μg/m³	1	BDL						
Ni	ng/m³	20	BDL						
As	ng/m³	6	BDL						
Вар	ng/m³	5	BDL						
С6Н6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	A DON'T CO

Mande

Puja Mohanly

oved By

HILLY AND SHAPE OF THE PARTY OF

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

AAQ3: At Midd	lle Of the Open Cast	Quarry	C1-2020		/				
Parameters	Unit	CPCB AAQ Standard 2009	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Annual Avg
PM ₁₀	μg/m³	100	73.8	62.4	61.4	61.2	60.8	61.2	61.3
PM _{2.5}	μg/m³	₹ 60	45.2	41.8	33.4	34.5	32.6	33.8	35.6
SO2	μg/m³	80	11.4	9.4	8.8	9.2	9.8	10.2	9.0
NOX	μg/m³	1 80	15.2	14.1	12.1	12.6	12.2	12.6	12.2
СО	mg/m³	1 4	1.3	1.4	1.32	1.32	1.26	1.31	1.3
03	μg/m³	100	6.1	5.4	5.4	6.1	5.8	6.1	5.5
NH3	$\mu g/m^3$	2 400	21.8	21.4	22.8	23.1	22.8	23.4	22.4
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

AAQ4: At Midd	le Of the COB Plant								
Parameters	Unit	CPCB AAQ Standard 2009	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Annual Avg
PM ₁₀	μg/m³	7 100	68.4	64.4	78.2	78.2	77.4	75.6	74.6
PM _{2.5}	μg/m³	60	41.2	39.6	44.2	44.6	42.8	40.8	43.3
SO2	μg/m³	1 80	9.8	10.1	10.8	11.4	11.2	11.6	10.6
NOX	μg/m³	1 80	13.2	13.6	14.8	15.2	14.8	15.2	14.2
СО	mg/m³	1 4	1.1	1.2	1.29	1.26	1.22	1.28	1.2
03	μg/m³	100	4.2	4.6	5.2	5.8	5.6	6.1	5.0
NH3	μg/m³	2 400	BDL	BDL	23.8	24.4	23.6	24.2	23.3
Pb	μg/m³	1	BDL						
Ni	ng/m³	20	BDL						
As	ng/m³	6	BDL						
Вар	ng/m³	5	BDL						
С6Н6	μg/m³	1	BDL						

Annexure No.-10 **Visiontek Consultancy Services Pvt. Ltd.**

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

				AN	MBIENT AIF	R QUALITY	(CORE ZO	ONE)	
AAQ1: Near I	Dispensary	/							
Parameters	Unit	CPCB AAQ Standard 2009	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Annual Avg
PM_{10}	μg/m³	100	7.8	66.6	83.2	79.4	76.8	77.2	70.4
PM _{2.5}	μg/m³	60	43.7	38.8	48.8	48.8	48.2	50.6	46.9
SO2	μg/m³	80	10.2	9.4	10.8	11.8	11.2	11.6	10.4
NOX	μg/m³	80	14.2	13.8	14.4	14.8	14.2	14.8	14.2
СО	mg/m³	4	1.2	1.1	1.31	1.28	1.22	1.26	1.2
03	μg/m³	100	4.6	4.8	4.6	5.6	5.2	5.6	4.8
NH3	μg/m³	400	21.2	20.8	22.4	22.1	21.8	22.6	21.6
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

AAQ2: Near \	Weigh Brid	dge							
Parameters	Unit	CPCB AAQ Standard 2009	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Annual Avg
PM ₁₀	μg/m³	100	74.2	68	48.8	48.2	46.8	48.8	57.5
PM _{2.5}	μg/m³	60	46.4	40.2	19.6	21.6	20.8	22.4	31.0
SO2	μg/m³	80	10.6	9.6	11.8	12.4	11.6	12.8	11.0
NOX	μg/m³	80	14.8	13.2	5.6	6.8	6.2	6.8	8.1
СО	mg/m³	4	1.2	.0	1.26	1.24	1.18	1.22	1.2
03	μg/m³	100	5.2	5.1	4.2	4.8	4.6	4.8	4.6
NH3	μg/m³	400	21.8	21.2	21.2	21.4	20.6	21.2	21.0
Pb	μg/m³	1	BDL						
Ni	ng/m³	20	BDL						
As	ng/m³	6	BDL						
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDI
C6H6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	A SONTER CO.

Prija Mohanly

A Downward By

HICH STREET STRE

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

AAQ3: At Mid	dle Of the Open Cast C	Quarry	2. 2020			•			
Parameters	Unit	CPCB AAQ Standard 2009	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Annual Avg
PM ₁₀	μg/m³	100	73.8	62.4	61.4	61.2	60.8	61.2	61.3
PM _{2.5}	μg/m³	€ 60	45.2	41.8	33.4	34.5	32.6	33.8	35.6
SO2	μg/m³	80	11.4	9.4	8.8	9.2	9.8	10.2	9.0
NOX	μg/m³	1 80	15.2	14.1	12.1	12.6	12.2	12.6	12.2
СО	mg/m³	1 4	1.3	1.4	1.32	1.32	1.26	1.31	1.3
03	μg/m³	100	6.1	5.4	5.4	6.1	5.8	6.1	5.5
NH3	μg/m³	2 400	21.8	21.4	22.8	23.1	22.8	23.4	22.4
Pb	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Ni	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL	BDL
As	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Вар	ng/m³	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
С6Н6	μg/m³	1	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Parameters	Unit	CPCB AAQ Standard 2009	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Annual Avg
PM ₁₀	μg/m³	7 100	68.4	64.4	78.2	78.2	77.4	75.6	74.6
PM _{2.5}	μg/m³	60	41.2	39.6	44.2	44.6	42.8	40.8	43.3
SO2	μg/m³	1 80	9.8	10.1	10.8	11.4	11.2	11.6	10.6
NOX	μg/m³	1 80	13.2	13.6	14.8	15.2	14.8	15.2	14.2
СО	mg/m³	1 4	1.1	1.2	1.29	1.26	1.22	1.28	1.2
03	μg/m³	100	4.2	4.6	5.2	5.8	5.6	6.1	5.0
NH3	μg/m³	2 400	BDL	BDL	23.8	24.4	23.6	24.2	23.3
Pb	μg/m³	1	BDL						
Ni	ng/m³	20	BDL						
As	ng/m³	6	BDL						
Вар	ng/m³	5	BDL						
C6H6	μg/m³	1	BDL						

Puja Mohanly

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

-						
Parameters	Test Method	Unit	Analysis Result			
			DEC-20	MAR-21	Avg	
Suspended Particulate	IS 5182 (P-4)1999					
	RA 2014	ug/m ³	126	132	127.33	
Matter as SPM	Gravimetric Method	p. 8,				
	F2- Near CC	OB Plant Area				
Test	Test Method	Unit	Analysis Result			
- Parameters			DEC-20	MAR-21	Avg	
Suspended Particulate Matter as SPM	IS 5182 (P-4)1999 RA 2014 Gravimetric Method	μg/m³	228	230	228.66	
	F3-Near Mines Loadi	ing & Unloadin	g Point			
Test	Test Method	Unit	Analysis Resu			
1 at afficiers			DEC-20	MAR-21	Avg	
Suspended Particulate Matter as SPM	IS 5182 (P-4)1999 RA 2014 Gravimetric	μg/m ³	182	186	164	
	Suspended Particulate Matter as SPM Test Parameters Suspended Particulate Matter as SPM Test Parameters Suspended	Suspended Particulate Matter as SPM Test Parameters Suspended Particulate Matter as SPM Test Parameters Suspended Particulate Matter as SPM Test Parameters Test Parameters Test Method IS 5182 (P-4)1999 RA 2014 Gravimetric Method F3-Near Mines Loadi Test Method F3-Near Mines Loadi Test Method IS 5182 (P-4)1999 RA 2014 Gravimetric Method F3-Near Mines Loadi Test Method F3-Near Mines Loadi Test Method Gravimetric Gravimetric Test Method F3-Near Mines Loadi Gravimetric Gravimetric Test Method F3-Near Mines Loadi Gravimetric Test Method F3-Near Mines Loadi Gravimetric Gravimetric	Suspended Particulate Matter as SPM Test Parameters Suspended Particulate Method Test Parameters Test Parameters Test Parameters Test Method IS 5182 (P-4)1999 RA 2014 Gravimetric Method IS 5182 (P-4)1999 RA 2014 Gravimetric Method F3-Near Mines Loading & Unloading Test Method F3-Near Mines Loading & Unloading Test Method F3-Near Method Test Method F3-Near Method F3-Near Method F3-Near Method Test Method F3-Near Method Gravimetric Method F3-Near Method F3-Near Method F3-Near Method F3-Near Method F3-Near Method F3-Near Method Gravimetric Gravimetric F3-Near Method F3-Near Method	Suspended Particulate Matter as SPM Test Parameters Suspended Particulate Method Test Parameters Test Method Test Met	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

Annexure No.-12

Visiontek Consultancy Services Pvt. Ltd.

a the property of the property

TC-7944

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

OSTAPAL CHROMITE MINES

PERIOD: OCT-2020 TO MAR-2021

ETP WATER QUALITY ANALYSIS REPORT

Sl. Parameters		Testing Methods	Unit	Standards (In land Surface	Analysis Results	Analysis Results	Annual
No.	1 at affects	resulting Methods	Cint	water)	DEC-20	MAR-21	Average
1	Colour	Visual Comparison Mhod APHA 2120 B; 23 rd Edition, 2017	Hazen	Colourless	5	5	5.0
2	Odour	Threshold Odour Method APHA 2150 B; 23 rd Edition, 2017		Odourless	pungent smell	pungent smell	pungent smell
3	pH at 25°C	pH Meter APHA 4500 H ⁺ B; 23 rd Edition, 2017		5.5-9.0	7.84	7.92	7.9
4	Total Suspended Solids	Gravimetric Method APHA 2540 D; 23 rd E ition, 2017	mg/l	100	18	22	20.0
5	Copper as Cu	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	3	<0.05	<0.05	<0.05
6	Fluoride as F	Distillation followed y Spectophotometric Method	a/I	2	0.26	0.28	0.3
U	Fuolitie as F	APHA 4500 F- C,D; 2 rd Edition, 2017	. mg/l	2	0.20	0.28	
7	Total Residual Chlorine	Iodometric Method APHA 23RD Ed,2017 : 4500Cl, B	mg/l	1	ND	ND	ND
8	Iron as Fe	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	3	0.51	0.54	0.5
9	Manganese as Mn	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	2	<0.05	<0.05	<0.05
10	Nitrate as NO ₃	By UV-Screen Method APHA 4500 NO ₃ B; 23 rd Edition, 2017	mg/l	10	7.8	8.1	8.0
11	Phenolic Compounds	Distillation Followed by Spectophotometric Method	mg/l	1	<0.001	<0.001	<0.001
11	as C ₆ H ₅ OH	APHA 5530-B, D; 23rd Edition, 2017	ilig/1	1	\(\cdot\)	<0.001	\0.001
12	Selenium as Se	By AAS Method APHA 3500 Se C; 23 rd Edition, 2017	mg/l	0.05	<0.01	<0.01	<0.01
13	Cadmium as Cd	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	2	<0.001	<0.001	<0.001
14	Cyanide as CN	Distillation Followed by Spectophotometric Method	mg/l	0.2	<0.05	<0.05	<0.05
		APHA 4500 -CN-C,E; 23rd Edition, 2017		0.2	V0.03	\0.03	\0.03
15	Lead as Pb	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	0.1	<0.01	<0.01	<0.01
16	Mercury as Hg	By AAS Method APHA 3112 B; 23 rd Edition, 2017	mg/l	0.01	<0.001	<0.001	<0.001
17	Nickel as Ni	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	3	<0.05	<0.05	<0.05
18	Arsenic as As	By AAS Method APHA 3114 B; 23rd Edition, 2017	mg/l	0.2	<0.05	<0.05	<0.05

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@cspl.org, visiontekin@gmail.com, Visit us at: www.vcs l.org

(Committed For Better Environment)
(ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 Certified)

TC-7944

19	Total Chromium as Cr	By AAS Method APHA 3111 B; 23 rd Edition, 2017	g M		0.31	0.34	0.3
20	Zinc as Zn	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	5	0.026	0.031	0.028
21	Hexavalent Chromium as Cr ⁺⁶	By AAS Method APHA 3500 Cr B; 23 rd Edition, 2017	mg/l	0.1	<0.001	<0.001	<0.001
22	Vanadium as V	By AAS Method APHA 3500 V; 23 rd Edition, 2017	mg/l	0.2	<0.001	<0.001	<0.001
23	Temperature	By Thermometer APHA 2550 B; 23 rd Edition, 2017	Oc	Shall not exceed 5degree C above the receiving water temperature	30	34	30.7
24	Dissolved Oxygen	By Modified Winkler Method APHA4500 O C; 23 rd Edition, 2017	mg/l		7.1	6.8	7.1
25	Biochemical Oxygen Demand as BOD	Oxygen Depletion Method IS 3025 (Part 44):2003	mg/l	30	6	6.2	6.2
26	Chemical Oxygen Demand as COD	Open Reflux Method APHA 5220 B; 23 rd Edition, 2017	mg/l	250	18	20	19.3
27	Oil & Grease	Gravimetric Method (Solvent Extraction) APHA 5520 B; 23 rd Edition, 2017	mg/l	10	5	4.2	4.8
29	Ammonical Nitrogen as N	By TKN Method APHA 4500-NH ₃ C; 23rd Edition, 2017	mg/l	50	1.4	1.6	1.6
30	Total Kjeldahl Nitrogen as N	By TKN Method APHA 4500-N _{org} C; 23rd Edition, 2017	mg/l	100	5.1	4.8	5.1
31	Sulphide as S	By Methylene Blue Method APHA 4500-S D; 23r Edition, 2017	mg/l	2	<0.001	<0.001	<0.001
32	Free Ammonia as NH ₃	By Calculation	mg/l	10	4.2	4.1	4.3
33	Particulate Size of Suspended Solids	Gravimetric Method APHA 2540 D; 23 rd Edition, 2017	μ	Shall pass 850 micron IS Sieve	<850	<850	<850
34	Bio-assay Test	Evaluating Acute Toxicity IS 6582 (P-2) 2008	%	90% survival of fish after 96 hours in 100% effluent	92% Survival of Fish after 96 Hrs in 100% Effluent	96% Survival of Fish after 96 Hrs in 100% Effluent	92% Survival of Fish after 96 Hrs in 100% Effluent

Puja Mohanly

Annexure No.-13

		TE MINES Expenses for the year 2020-21			
SI. No.	ITEM	(in Rupees ₹)			
1	AFFORESTATION 5250 FY 21	(
a)	Seedlings @ ₹ 60/ - each	3,15,000			
1- \	Fertilizer/Insecticide/Cow -	4.05.000			
b)	dung(@ ₹ 20)	1,05,000			
- \	Digging of Pits/Planting (Labor	4.00.750			
c)	cost)@ ₹35	1,83,750			
d)	Post Plantation care @ ₹ 120/ - (Watering,	6 20 000			
	Weeding, basin making etc.)	6,30,000			
e)	Supervising	4,90,000			
	Sub-Total Sub-Total	17,23,750			
2	WATER MANAGEMENT & TREATMENT				
۵)	ETP Operation & Maintenance	22.90.460			
a)	(including costs of chemical & Manpower)	23,80,460			
b)	Power Consumption	4,78,598			
c)	Sludge disposal	70,961			
d)	Water sample analysis	71,196			
	Sub-Total	30,01,215			
3	DUST SUPRESSION & AIR MONITORING				
a)	Water spraying at dust 3389 trips (FY 21)	9,94,090			
	generating points by water tanker.				
b)	Air monitoring charges	2,11,200			
c)	Noise level measurement	1,800			
	Sub-Total	12,07,090			
	Grand Total	59,32,055			