FERRO ALLOYS CORPORATION LIMITED

OSTAPAL CHROMITE MINES

P.O.: KALIAPANI - 755047

DIST.: JAJPUR, ODISHA, INDIA PHONE: 06784 - 251312, 250598

E-mail: facor.ostapal@gmail.com ostapalmines@facor.in

OCMENV/

/2020

Date: 20.11.2020

To

The Joint Director (s)
Ministry of Environment, Forest & Climate change
Govt. of India
Eastern Regional Office
BHUBANESWAR

Sub:- Submission of Six monthly report on the status of compliance to the conditions stipulated in the grant of Environmental Clearance Letter No. J-11015/38/2006-IA-II(M), dtd. 06.12.2006 for Ostapal Chromite Mines of M/s. FACOR Ltd.

Dear Sir,

This has reference to the captioned subject, it is to inform you that we are herewith submitting Six monthly compliance reports pertaining to Ostapal Chromite Mines of M/s. FACOR Ltd. for the period from April, 2020 to September, 2020 along with the Environmental Monitoring data (Ambient Air, Noise, Water & Soil) for your kind perusal. The soft copy of the same is being sent by mail to your good office.

This is for your kind information and necessary action.

Thanking You,

Yours Faithfully, for FERRO ALLOYS CORPORATION LTD.

WINES MANAGE

Encl: A/a.

CC – The Director (IA), MoEF, 3rd Floor, Indira Paryavaran Bhawan, Jorbagh Road, New Delhi – 110032.

Name of the Project: OSTAPAL CHROMITEMINES, M/S.FACORLTD.

Project Code: Mining(Non-Coal)

Clearance Letter No.Withdate:No.J-11015/38/2006-IA-II(M)dt.06-12- 2006 Period of

Compliance Report: APRIL, 2020 to September 2020.

SI.	Specific Condition: Condition	Compliance Status	
lo.	Condition	la sin a	
1.	Tollution control boars, in a lemented	All the stipulated conditions are being effectively implemented ted.	
2.	Necessary forestry clearance under the	This area is left as Safety Zone area for greenbelt around periphery of forest land of M.L. area and mining operations in this area will not be done.	
3.	Top soil should be stacked properly with proper slope at earmarked site(s) with adequate measures and should be used for reclamation and rehabilitation of mined out area.	No top soil has been generated during the period April 2020 to September'2020	
4.	Over burden shall be stacked at earmarked dump site(s) only and should not be kept active for long period. The total height of the dump(s) should not exceed 45m in three stages of 15 m each, keeping overall slope of the dumps below 28 °. The proponent shall carry out slope stability study and submit report to the Ministry.	The OB is being dumped at earmarked sites only. The OB dump is not kept active for long period. The present height of the dump is 41m with over all slope 25°. In future also the overall slope will be maintained below 28°.	
	The OB dumps should be scientifically vegetated with suitable native species to prevent erosion and surface run off. In critical areas, use of geo textiles shall be taken for stabilization of the dump. Monitoring and management of rehabilitated areas should continue until the vegetation becomes self - sustaining. Compliance status should be submitted to the Ministry of Environment & Forests on six monthly basis.	The management of the rehabilitated areas of the dumps has been continuing until the vegetation becomes self-sustaining.	
5.	Trace Metals such as Ni, Co, As, and Hg should be analyzed in dust fall and soil samples for at least one year during summer, monsoon and winter seasons. If concentrations of these metals are found below the standards then with prior approval of MOEF this specific monitoring could be discontinued.	N.B-The analysis report of mines for the period from	

I.	Condition	Compliance Status
	size should be constructed to arrest silt and sediment flows from soil, OB and mineral dumps. The water so collected should be utilized for watering the mine area, roads, plantation etc. The drains should be regularly de -silted and maintained properly. Garland drain (size, gradient and length) shall be constructed for both mine pit & waste dump and sump capacity should be designed keeping 50% safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity should also provide adequate retention period to allow proper settling of silt material. Storm water return system should be provided. Storm water should not be allowed to go to the effluent treatment plant during high rainfall / super cyclone period. A separate storm water sump for this purpose	Catch drains around OB dumps and mineral stockyard have already been constructed with siltation ponds at regular intervals to arrest silt and sediments. Whenever required the silts and sediments are being cleaned from catch drains and siltation ponds and maintained regularly. Mine pumped out water is sufficient for dust suppression and plantation purposes. Hence catch drain water is dis-charging outside ML area through upgraded ETP. Hence there is no need for collection of water from catch drains from mine area, roads, plantation etc. Garland drains of width 2m, depth 1.5m and length 4325 m with gradient have been constructed for maximum discharge of rainfall in the adjoining areas. There is no chance of flow of storm water into the effluent treatment plant during high rain fall/super cyclone period became the plant is at high reduced level (RL). Hence storm water return system is not required.
7.	dumes a honchoc within the mine to check run -Off	Retaining wall of width 1.5m and height 1.2m has already been constructed all around the toe of dumps up to a length of 3125 m to check the run -off and siltation.
8.	Effluents containing of Cr ⁺⁶ shall be treated to meet the prescribed standards before reuse/discharge. Effluent Treatment plant should be provided for treatment of mine water discharge and wastewater generated from the workshop and mineral separation plant. Run off from OB dumps and other surface run off should be analyzed for Cr ⁺⁶ and in case its concentration is found higher than the permissible limit the water should be treated before reuse/discharge.	An Effluent Treatment Plant is operating for treatment of Mines discharge water. The conc. of Cr +6 in treated discharge water is <0.005mg/l. The tailing water (waste water of mineral separation plant) also is being treatedby adding FeSO4 before discharge into tailingpond. The treated tailing pond water is being collected in an intake pond and being re -used in beneficiation plant. Thus zero discharge from Beneficiation Plant is being maintained. Almost all mining machineries and transporting vehicles are being engaged on contract basis for transportation of OB and chrome ore. The company has few nos. of vehicles. The major repairing of these vehicles is being done at outside workshop and minor repairing is being done in our garage. Hence, discharge of workshop effluent Is nil. The total surface runoff water is being collected in two settling pits which are Pumped to the ETP for treatment before final discharge.
9.	Separate impervious concrete pits for disposal of sludge shall be provided for the safe disposal of sludge generated from the mining operations.	The sludge generated from mining operations contains chrome ore. It is being fed in Beneficiation Plant to separate the Chrome.

SI. No.	Condition	Compliance Status
10.	The Project proponent shall ensure that the quality of decanted effluents from the tailing pond confirm to the pre scribed standards before discharge.	The effluents from tailing pond are not discharged outside. The supernatant water of the tailing pond is being collected in a sump adjacent to the tailing pond and re-circulated in Beneficiation Plant.
11.	The Project proponent shall explore the possibility to reduce concentration of Cr +6 in the tailing pond in consultation with an Expert Scientific Institution like NEERI.	The Conc. of Cr ⁺⁶ in tailings is being reduced by adding FeSO ₄ solution and disposed in the tailing pond.
12.	Plantation shall be raised in an area of 33.02 Ha including green belt in an area of 6.56 Ha by planting native species around ML area, OB dumps, and roads around worked out area etc. in consultation with local DFO/Agriculture Department. The density of the trees should be around 2000 plant species per hectare.	inactive/dead benches of OB dumps, Road side, around C.O.B Plant and other places in an area of 32.83 Ha. Plantation is being carried out in
13.	Regular monitoring of ground water level & quality should be carried out by establishing a network of existing wells and constructing new Piezometers during the mining operation. The monitoring should be carried out four times in a year – pre-monsoon (April -May), monsoon (August), post - monsoon (November) and winter (January) and the data thus collected may be sent regularly to MOEF, Central Ground Water Authority and Regional Director Central Ground Water Board.	Monitoring of ground water level & quality is being carried out in 9 Nos. of wells. The Monitoring reports has been sent & the monitoring report for the period from JULY 20 to SEPTEMBER 2020 is enclosed as: Ground water level :Annexure No8 Ground water quality: Annexure No3 N.B-The analysis report of mines for the period from April 20 to June 20 could not be done due to covid -19
14.	The project proponent shall carry out regular monitoring of ground water quality in all the 14 wells. The frequency of monitoring in 8 wells where concentration of Cr ⁺⁶ is within permissible limits, will be quarterly while in the remaining 6 wells it will be on monthly basis.	The monitoring test reports of ground water quality in 6 Bore wells & 3 Nos. of piezometer holes for concentration of Cr +6 are enclosed for the period from JULY 20 to SEPTEMBER 2020 as Annexure No 3 N.B-The analysis report of mines for the period from April 20 to June 20 could not be done due to covid -19
15.	Project Authorities should meet water requirement of the peripheral village(s), especially, if the village wells go dry due to mine de -watering.	As a part of peripheral development, the Project Authority has constructed Bore wells at nearby villages and also potable water is being provided to nearby villages by water tankers. Reading of the abstraction structures, used for water supply to local community are enclosed for reference as Annexure No.8 : for the period from JULY 20 to SEPTEMBER 2020 N.B-The analysis report of mines for the period from April 20 to June 20 could not be done due to covid -19

1

4.

SI.	Condition	Compliance Status
16 .	use.	NOC has been obtained from Central Ground Water Authority, Ministry of Water Resources, New Delhi vide letter no.21 - 4/1456/OR/MIN/2017 -1735 dated 28.08.2018 for ground water withdrawal. The approved NOC is enclosed as Annexure No10 .
17.	Suitable rain water harvesting measures on long- term basis shall be planned and implemented in consultation with Regional Director, CGWB.	Rain water has been collected in different pits for suitable rain water harvesting measures.
18.	Drills should be wet operated or operated with dust extractors.	Wet Drilling is being practiced.
19.	Blasting operation should be carried out only during the day time. Controlled blasting should be practiced. The mitigative measures for control of ground vibrations and to arrest fly rocks and boulders should be implemented.	Blasting operation is being carried out in day time only. Controlled blasting is being practiced by following Nonel&muffle blasting. Delay detonators are used for providing delay timings between rows and within rows of holes. Numbers of rows in a blast are restricted to less than three to get good fragmentation and to reduce fly rocks and ground vibration.
20.	converted into water Body with shallow depths not exceeding 30m. The higher benches of the excavated void/mine pit shall be terraced and plantation done to stabilize the slopes. Peripheral fencing shall be done along the	The same will be implemented at the end of mining operation. It has already been prepared in Mining Plan & submitted to IBM, Bhubaneswar
21.	Vehicular emissions should be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral. The vehicles should be covered with a tarpaulin and shall not be overloaded.	engines and changing of lubricants as per the recommendation of the manufacturer. HEMMs have valid PUC Certificate which is only allowed for operation inside the Mines. All the transporting vehicles are being covered with tarpaulin and over loading are strictly avoided.
22	Consent to operate should be obtained from SPCB before enhancing Production capacity of the mine.	Consent to operate has been obtained from SPCB,

SI. No.	Condition	Compliance Status
23.	Sewage treatment Plant should be installed for the colony. ETP should also be provided for workshop and waste water generated from Mining operations.	There is no colony inside the ML area. Almost all mining machineries and transporting vehicles are being engaged on contract basis for transportation of OB and chrome ore. The company has few Nos. of vehicles. However, major repairing of the vehicles is being done at outside workshop and minor repairing is being done in ourgarage. Hence, discharge of workshop effluent is nil. An ETP has already been established for treatment of mines water.
24.	A final mines closure plan along with details of corpus fund should be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.	The same will be submitted in due time to MOEF for approval.

GENERAL CONDITIONS:

SI. No.	Condition	Compliance Status
1	should be made without prior. No change in the calendar plan including excavation, quantum of mineral Chromite and waste should be made.	The Mining technology & scope of working has not been changed. The calendar plan including excavation, quantum of mineral Chromite and waste over burden has not been changed. The calendar plan including excavation, quantum of mineral chromite and waste over burden has been generated during the period (April, 2020 to September, 2020) is given in Annexure No11.
3	Conservation measures for protection of flora & fauna in the Core & Buffer Zone should be drawn up in consultation with local forest & wild life department.	maintaining venicles, watchinali and infrastructure &
4	Four ambient air quality -monitoring stations should be established in the Core zone as well as in the Buffer zone for RPM, SPM, SO ₂ & NO _x monitoring. Location of the stations should be decided based on the meteorological data, topographical features, and environmentally and ecologically sensitive targets in consultation with the State Pollution Control Board.	been established in consultation with 51 co.

SI. No.	Condition	Compliance Status
5	Data on ambient Air Quality (RPM, SPM, SO ₂ & NO _x) should be regularly submitted to the Ministry including its Regional Office at Bhubaneswar and the State Pollution Control Board / Central Pollution Control Board once in six months.	Test reports on Ambient Air Quality monitoring viz., PM ₁₀ , PM _{2.5} , SO ₂ , NO _x & CO is being monitored & submitted regularly. Monitoring report for the period from JULY 20 to SEPTEMBER 2020 are enclosed as follows: Annexure No1: Core Zone Annexure No2: Buffer Zone N.B-The analysis report of mines for the period from April 20 to June 20 could not be done due to covid -19
6	Fugitive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading & unloading and at transfer points shouldbeprovided and properly maintained.	and the second s
7	Measures should be taken for control of noise levels below 85 dB(A) in work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plugs / muffs.	
8	Industrial waste water (workshop & waste water from the Mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31st December, 1993 or as amended from time to time. Oil & grease trap should be installed before discharge of workshop effluents.	The Mines waste water is being pumped out directly in to the intake tank of the ETP for treatment of Cr ⁺⁶ and part of the treated water is used in our COB Plant, plantation, dust suppression and surplus treated water is finally discharged to outside ML area. The analysis of this water shows that all parameters are

SI. No.	Condition	Compliance Status
9	protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects. Occupational health surveillance program of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.	In addition to water spraying to suppress dust generation, workers engaged in dusty areas such as drillers, dumper drivers, HEMM Operators are being provided with nose masks as precautionary measure. Training &information on safety, health hazards are being given to all categories of deserved workers. Occupational health surveillance programmed all categories of workers and employees is being conducted periodically by lung function test, audiometry test, vision tests and other tests. Workers/employees with defects are advised for suitable treatment or engaged on suitable rotation duty.
10	suitable qualified personnel should be set -up under the control of a Senior Executive, who will report directly to the Head of the Organization.	A separate Environment Management Cell with qualified personnel and well equipped Environment Engineering Laboratory is functioning under the control of a Senior Executive. Besides we are carrying out all Environmental monitoring & analysis through a MoEF & NABL accredited laboratory M/s. Visiontek Consultancy Services Pvt. Ltd, Bhubaneswar & the monitoring reports are enclosed as Annexures.
11	The Project authorities should inform to the Regional Office located at Bhubaneswar regarding date of financial closures and final approval of the Project by the concerned authorities and the date of start of land. development work.	The final approval of the Project is 06.12.2006. It is a mining industry. Hence, land development work is a continuous process.
12	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise	Separate funds provision is made to carryout environmental protection measures. Details of expenses during the year 2020-21 will be submitted after completion of financial year and proposed budgeted amount for the year 2020-21.is given in Annexure No

QUATERLY ANALYSIS REPORT (JULY 2020 TO SEPTEMBER 2020)

ON

ENVIRONMENTAL MONITORING

AT

OSTAPAL CHROMITE MINES

CHROME ORE MINING DIVISION POST-KALIAPANI, PIN– 755028 DISTRICT –JAJPUR, ODISHA

M/s FERRO ALLOYS CORPORATION LIMITED

Prepared by:-

VISIONTEK CONSULTANCY SERVICES PVT. LTD.

(An Enviro Engineering Consulting Cell)

Plot No.-M22&M23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Odisha

Tel.: 0674-3511721 E-mail: visiontekin@gmail.com, visiontek@vcspl.org, Visit us at: www.vcspl.org

CONTENTS

Sl. No.	Description	Page No.
1.0	Introduction	1
2.0	2.0 Study period	
3.0	Methodology	1
4.0	Selection of Monitoring Locations	1
4.1	Ambient Air Quality	1-2
4.1.1	Ambient Air Quality Sampling Stations (Core Zone)	3
4.1.2	Ambient Air Quality Sampling Stations (Buffer Zone)	3
4.2	Water Quality	3-5
4.2.1	Ground Water Sampling Locations	5
4.2.2	Effluent Water Sampling Locations	5
4.3	Dust Fall	6
4.3.1	Dust Fall Sampling Locations	6
4.4	Soil Analysis	6
4.4.1	Soil Analysis Sampling Locations	7
4.5	Fugitive Emission	7
4.5.1	Fugitive Emission Sampling Stations	7
4.6	Ground Water Level Measurement	7
4.6.1	Ground Water Level Sampling Stations	7-8
4.7	Noise Level Monitoring	8
4.7.1 Noise Level Sampling Stations		8

ANNEXURE

ANNEXURE

Annexure No.	Description	Page No.
1	Ambient Air Quality Analysis Report (Core Zone)	9-26
2	Ambient Air Quality Analysis Report (Buffer Zone)	27-45
3	Ground Water Quality Analysis Report	46-52
4	Effluent Water Quality Analysis Report	53-55
5	Dustfall Measurement Analysis Report	56-57
6	Soil Quality Analysis Report	58-59
7	Fugitive Emission Monitoring Report	60-61
8	Ground Water Level Monitoring Report	62-63
9	Noise Quality Monitoring Report	64-65

METHODOLOGY OF ENVIRONMENTAL MONITORING STUDY

1.0 INTRODUCTION:

M/s Visiontek Consultancy Services Pvt. Ltd. carried out the environmental monitoring for the Ferro Alloys Corporation Limited (OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR)

Environmental monitoring was carried out at various locations inside the plant site. The Monitoring was carried out with respect to the qualities of Ambient Air Quality (Core & Buffer Zone), Ground Water Quality, Effluent Water Quality, Fugitive Dust, Dust Fall, Ground Water Level, Noise Monitoring & Soil Testing.

2.0 STUDY PERIOD:

The Study Was Conducted During Month Of July 2020 to September 2020.

3.0 METHODOLOGY:

The environmental monitoring was carried out as per the standard methodology of Bureau of Indian Standard (IS: 11255), American Public Health Association (APHA), & Central Pollution Control Board (CPCB).

4.0 SELECTION OF MONITORING LOCATIONS:

The location for Ambient Air Quality (Core & Buffer Zone), Ground Water Quality, Effluent Water Quality, Fugitive Dust, Dust Fall, Ground Water Level, Noise Monitoring & Soil Testing has been selected by FACOR'S representative.

4.1 AMBIENT AIR QUALITY:

The ambient air quality (AAQ) of the study region was monitored at three locations selected within the premises. Ambient air quality (AAQ) in respect of Particulate Matter (size less than 10 μ m or PM₁₀), Particulate matter (size less than 2.5 μ m or PM_{2.5}), Sulphur di-oxide (SO₂), Oxides of Nitrogen (NOx),

OSTAPAL CHROMITE MINES FERRO ALLOYS CORPORATION LTD, BHADRAK

Environmental Monitoring Report

Carbon Monoxide (CO), Ozone (O3), Ammonia (NH3), Nickel (Ni), Lead (Pb), Arsenic (As), Benzene (C6H6) and Benzo(a)Pyrene (BaP). Respirable Dust Sampler (APM 460BL) of ENVIROTECH make, FPS (APM) of ENVIROTECH make, Organic Vapour Sampler, ENVIROTECH make, model APM 850 were used for monitoring of ambient air quality at all the identified locations. The sampling method was carried out as per the guidelines for planning IS: 5182 (part 14): 2000. And the analysis methods are outlined in the table as shown below:

AMBIENT AIR QUALITY ANALYSIS METHOD

SL. NO.	PARAMETER	ANALYSIS METHOD
1.	Particulate Matter (size less than 10 μ m or PM ₁₀), μ g/m ³	Gravimetric method
2.	Particulate matter (size less than 2.5 μm or PM _{2.5}), $\mu g/m^3$	Gravimetric method
3.	Sulphur di-oxide (SO ₂), μg/m ³	Improved west & Geake method
4.	Oxides of Nitrogen (NO _x), µg/m ³	Jacob and Hochheiser Modified method
5.	Carbon Monoxide (CO), mg/m ³	NDIR Spectroscopy method
6.	Ozone (O ₃), µg/m ³	Chemical Method
7.	Ammonia (NH ₃), μg/m ³	Indophenols Blue Method
8.	Benzene (C_6H_6), $\mu g/m^3$	Absorption & Desorption followed by GC analysis
9.	Benzo(a) Pyrene (BaP), ng/m ³	Solvent extraction followed by GC analysis.
10.	Nickel (Ni), ng/m ³	AAS method after sampling
11.	Lead (Pb), μg/m ³	AAS method after sampling
12.	Arsenic(As), ng/m ³	AAS method after sampling

FERRO ALLOYS CORPORATION LTD, BHADRAK

4.1.1 AMBIENT AIR QUALITY SAMPLING STATIONS (CORE ZONE):

Details of the sampling locations are given below.

Field ID	Station
AAQMS-1	Near Dispensary
AAQMS-2	Near Weighbridge
AAQMS-3	At Middle of the Opencast Quarry
AAQMS-4	At Middle of the COB Plant

The Detail of Ambient Air Quality (Core Zone) Report is given in the Annexure-1.

4.1.2 AMBIENT AIR QUALITY SAMPLING STATIONS (BUFFER ZONE):

Details of the sampling locations are given below.

Field ID	Station
AAQMS-1	Near Village Ostia
AAQMS-2	Near Village Koiposi
AAQMS-3	Near Kaliapani Township
AAQMS-4	Near Village Ostapal

The Detail of Ambient Air Quality (Buffer Zone) Report is given in the Annexure-2.

4.2 WATER QUALITY:

Water quality monitoring was carried out at fourteen waste water locations. Samples were collected manually during study period. Considering several possibilities of interference the poly tetrafluoroethylene (PTFE) sample bottles were used. These bottles were sterilized properly before being used for water sample collection.

The methodology for sample collection, preservation and analysis was as per Standard methods for the Examination of Water and Wastewater, 23RD Edition 2017, APHA.

WATER QUALITY ANALYSIS METHOD

SL.NO.	PARAMETER	ANALYSIS METHOD
1	Colour	Visual Comparison Method APHA 23 RD Ed,2017: 2120 B, C
2	Odour	Threshold Odour Test APHA 23 RD Ed,2017:2150 B
3	Taste	Flavor Threshold Test APHA 23 RD Ed,2017 : 2160 C
4	Turbidity	Nephelometric Method APHA 23 RD Ed,2017 :2130 B
5	pH Value	pH Meter

FERRO ALLOYS CORPORATION LTD, BHADRAK

Environmental Monitoring Report

		APHA 23 RD Ed,2017 : 4500H ⁺ B
	Total Hardness	EDTA Titrimetric Method
6	(as CaCO ₃)	APHA 23 RD Ed,2017: 2340 C
7	Iron (as Fe)	By AAS Method
/	iron (as Fe)	APHA 23 RD Ed,2017: 3111, B
8	Chloride (as Cl)	Argentometric Method
O	Chioride (as Ci)	APHA 23 RD Ed,2017 : 4500Cl B
9	Residual, free Chlorine	Iodometric Method
	residual, free emornie	APHA 23 RD Ed,2017 : 4500Cl, B
10	Dissolved Solids	Gravimetric Method
	2 15501 / 04 2 01145	APHA 23 RD Ed,2017: 2540 C
11	Calcium (as Ca)	EDTA Titrimetric Method
	Careram (as car)	APHA 23 RD Ed,2017: 3500Ca B
12	Magnesium (as Mg)	Calculation Method
	11.81.1.1.1 (111 11.8)	APHA 23 RD Ed,2017: 3500Mg B
13	Copper (as Cu)	By AAS Method
	11 , ,	APHA 23 RD Ed,2017: 3111 B
14	Manganese (as Mn)	Persulfate Method
		APHA 23 RD Ed,2017: 3500Mn B
15	Sulphate (as SO ₄)	Turbidimetric Method APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E
		By UV-Screen Method
16	Nitrate (as NO ₃)	
		APHA 23 RD Ed,2017: 4500 NO ₃ E Distillation followed by Spectrophotometric Method
17	Fluoride (as F)	APHA 23 RD Ed,2017: 4500F C
	Phenolic Compounds	Chloroform Extraction by Colorimetric Method
18	(as C ₆ H ₅ OH)	APHA 23 RD Ed,2017: 5530 B,D
		AAS Method
19	Mercury (as Hg)	APHA 23 RD Ed,2017: 3112 B
		AAS Method
20	Cadmium (as Cd)	APHA 23 RD Ed,2017: 3111 B
		By AAS Method
21	Selenium (as Se)	APHA 23 RD Ed,2017: 3500 Se C
22		By AAS Method
22	Arsenic (as As)	APHA 23 RD Ed,2017: 3114 B
22	Coordida (or CNI)	Distillation followed by Spectophotometric Method
23	Cyanide (as CN)	APHA 23 RD Ed,2017: 4500 CN ⁻ C,D
24	Load (as Db)	By AAS Method
	Lead (as Pb)	APHA 23 RD Ed,2017 3111 B
25	Time (ee 7n)	By AAS Method
23	Zinc (as Zn)	APHA 23 RD Ed,2017: 3111 B
26	Anionic Detergents	Anionic Surfactants as MBAS
20	(as MBAS)	APHA 23RD Ed,2017: 5540 C
27	Chromium (as Cr ⁺⁶⁾	Diphenyl Carbazide Method
21	Cinomium (as Ci	APHA 23 RD Ed,2017: 3500Cr B
28	Mineral Oil	Partition-Gravimetric Method
20	Transciul On	APHA 23 RD Ed,2017: 5520 B
29	Alkalinity	Titration Method
		APHA 23 RD Ed,2017:2320 B
30	Aluminium as(Al)	AAS Method
		APHA 23 RD Ed,2017: 3111 D
31	Boron (as B)	Curcumin Method
32	` ´	APHA 23 RD Ed,2017: 4500B, B
	Temperature	By Thermometer

FERRO ALLOYS CORPORATION LTD, BHADRAK

Environmental Monitoring Report

		APHA 2550 B; 23rd Edition, 2017
33	Dissolved Oxygen	Modified Winkler Method
33	Dissolved Oxygen	APHA 4500 O. C; 23rd Edition, 2017
34	Biochemical Oxygen Demand as BOD	Oxygen Depletion Method
34	Diochemical Oxygen Demand as BOD	IS 3025 (Part 44):2003
35	Chemical Oxygen Demand as COD	Open Reflux Method
- 55	Chemical Chygon Domaia as COD	APHA 5220 B; 23rd Edition, 2017
36	Oil & Grease	Gravimetric Method (Solvent Extraction)
	0.11 00 0.10 0.10	APHA 5520 B; 23 rd Edition, 2017
37	Ammonical Nitrogen as N	By TKN Method
	1 IIIIII OHOU 1 III OGON US 1 (APHA 4500-NH ₃ C; 23 rd Edition, 2017
38	Total Kjeldahl Nitrogen as N	By TKN Method
	Total Hjerami Hitrogen us IV	APHA 4500-Norg C; 23 rd Edition, 2017
39	Sulphide as S	By Methylene Blue Method
	•	APHA 4500-S D; 23 rd Edition, 2017
40	Free Ammonia as NH3	By Calculation
41	Particulate Size of Suspended Solids	Gravimetric Method
	Turrediate Size of Suspended Sories	APHA 2540 D; 23 rd Edition, 2017
42	Bio-assay Test	Evaluating Acute Toxicity
	210 4004) 1000	IS 6582 (P-2) 2008
43	Total Suspended Solids	Gravimetric Method
15	Total Suspended Solids	APHA 2540 D; 23 rd Edition, 2017
44	Total Coli form as TC	MPN Method
	Total Coll form as TC	APHA 23 rd Ed,2017: 9221 B

4.2.1 GROUND WATER SAMPLING LOCATIONS:

Detail of the sampling location is given below:

Field ID	Location	
GW-1	Bore well Near Work Shop of the Mines	
GW-2	Bore Well Near Main Gate	
GW-3	Open Well Near Ostia Village	
GW-4	Open Well Near Ostapal Village	
GW-5	Tube Well inside Shiva Temple of Gurujanga Village	
GW-6	Tube Well outside Shiva Temple Gurujanga Village	
GW-7	Eastern side of the Quarry (PZ-1)	
GW-8	Southern side of the Quarry (PZ-2)	
GW-9	Wastern side of the Quarry (PZ-3)	


The Detailed Ground Water Quality Analysis Report is mentioned in Annexure-3.

4.2.2 EFFLUENT WATER SAMPLING LOCATIONS:

Detail of the sampling location is given below:

Field ID	Location
EW-1	ETP Outside Discharge Point

The Detailed Effluent Water Quality Analysis Report is mentioned in Annexure-4.

OSTAPAL CHROMITE MINES FERRO ALLOYS CORPORATION LTD, BHADRAK

4.3 DUST FALL:

Dust Fall monitoring is one aspect of air quality that industrial hygienist use to determine the amount of dust particles present in the workplace, cities or communities over a given period of time. Dust Fall Monitoring carried out by Respirable Dust Sampler at One Location

4.3.1 DUST FALL SAMPLING LOCATIONS:

Details of the sampling locations are given below.

Field ID	Station
DF-1	Near Roof Top of Office Building

The Detail of Dust Fall Report is given in the Annexure-5.

4.4 SOIL ANALYSIS:

The soil analysis of the study region was monitored at Four selected outside the plant premises. Soil Sampling is based on agriculture field available in the study area. Composite sampling is done following SPCB method. Coning and Quartering method is done & the samples were collected in air locked polythenes following with proper PPE (Personal Protective equipments). Locations of Soil Analysis Stations are as follows:

4.4.1 SOIL ANALYSIS SAMPLING LOCATIONS:

Field ID	Location ID
S-1	East Side Quarry
S-2	West Side Quarry
S-3	North Side Quarry
S-4	South Side Quarry

The Detail of Soil Quality Analysis Report is given in the Annexure-6.

4.5 FUGITIVE EMISSION:

The fugitive emission of the study region was monitored at two locations selected within the plant premises. The parameter monitored was Suspended Particulate Matter Using Sampler of ENVIROTECH make: model APM 460 BL of the identified location.

FERRO ALLOYS CORPORATION LTD, BHADRAK

4.5.1 FUGITIVE EMISSION SAMPLING STATIONS:

Detail of the sampling location is given below.

Field ID	Station		
F1	Near Mines Ore Plot Area		
F2	Near COB Plant Area		
F3	Near Mines Loading & Unloading		

The Detailed **Fugitive Emission Report** is given in the **Annexure-7**

4.6 GROUND WATER LEVEL MEASUREMENT:

The Ground Water Level Measurement of the study region was monitored at Nine locations selected within the plant premises & Buffer Area . The parameter monitored was Ground water Level Using Peizeometer Sampler of the identified location.

4.6.1 GROUND WATER LEVEL SAMPLING STATIONS:

Detail of the sampling location is given below.

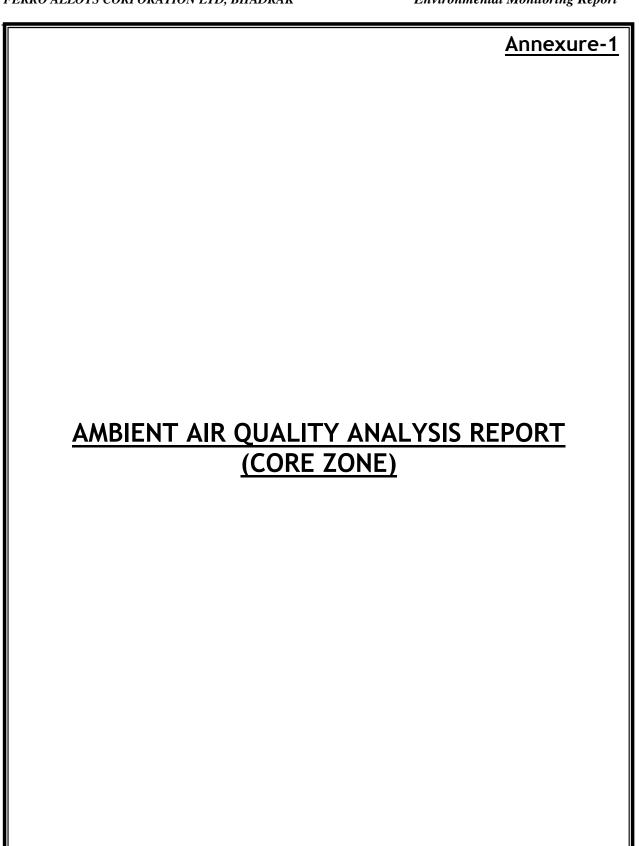
Field ID	Station
GW-1	Bore well Near Work Shop of the Mines
GW-2	Bore Well Near Main Gate
GW-3	Open Well Near Ostia Village
GW-4	Open Well Near Ostapal Village
GW-5	Tube Well inside Shiva Temple of Gurujanga Village
GW-6	Tube Well outside Shiva Temple Gurujanga Village
GW-7	Eastern side of the Quarry (PZ-1)
GW-8	Southern side of the Quarry (PZ-2)
GW-9	Western side of the Quarry (PZ-3)

The Detailed Ground Water Level is given in the Annexure-8.

4.7 NOISE LEVEL MONITORING:

Noise Levels were recorded by Digital Sound Level Meter of LUTRON make at two locations within the plant premises. Monitoring was carried out once in a month at each location during the study period for day time and night time. According to CPCB (Noise Pollution (Regulation & Control) rules, 2000 day time is considered from 6.00 am to 10.00 pm and night time is considered from 10.00 pm to 6.00 am.

Locations of Noise level monitoring stations are as follows:



Environmental Monitoring Report

4.7.1 NOISE LEVEL SAMPLING STATIONS:

Field ID	Location ID		
N-1	Open Cast Quarry		
N-2	COB Plant		
N-3	Mines Loading & Unloading		

The Detailed Noise Measurement Report is given in **Annexure-9**

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref: Envlab/20/R-3725 Date: 07.09.2020

AMBIENT AIR QUALITY(CORE ZONE) MONITORING REPORT- JULY 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : **AAQ** (**Cz**)-1: Near Dispensary

AAQ (Cz)-2: Near Weighbridge

AAQ (Cz)-3: At Middle of the Opencast Quarry **AAQ** (Cz)-4: At Middle of the COB Plant

4. Method of Sampling : IS 5182(P-5) 1975 RA 2014

5. Date of Sampling : **06.07.2020**

6. Date of Analysis : **08.07.2020 to 09.07.2020**

7. Monitoring Instruments: RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Monitor, VOC Sampler

8. Sample Collected by : VCSPL Representative in presence of Client's Representative

Parameters Analyzed	Unit	Testing Methods NAAQ Standard	_	Analysis Result			
,			AAQ(Cz)-1	AAQ(Cz)-2	AAQ(Cz)-3	AAQ(Cz)-4	
Particulate matter(size less than10µm) or PM ₁₀	$\mu g / m^3$	IS 5182 (P-22) 2006 RA 2017 Gravimetric Method	100	78.2	70.2	56	74.2
Particulate matter(size less than 10 µm) or PM _{2.5}	$\mu g / m^3$	VCSPL/AAQ- SOP/001 Date: 01.12.2019 Gravimetric Method	60	46.9	42.1	33.6	44.5
Sulphur dioxide as SO ₂	$\mu g / m^3$	IS 5182 (P-2) 2001 RA 2017 Improved West and Geake Method	80	9.1	7.8	6.92	9.6
Oxides of Nitrogen as NO _x	μg/m³	IS 5182 (P-6) 2006 RA 2017 Modified Jacob & Hochheiser Method (Na-Arsenite)	80	14.1	10.6	9.8	13.2
Carbon Monoxide as CO	mg / m ³	IS 5182 (P-10) 2006 RA 2017 NDIR Spectroscopy	4	1.28	1.16	1.32	1.26

Puja Mohanly

Page No 1 of 2

Visiontek Consultancy Services Pvt. Ltd.

DNV-GL

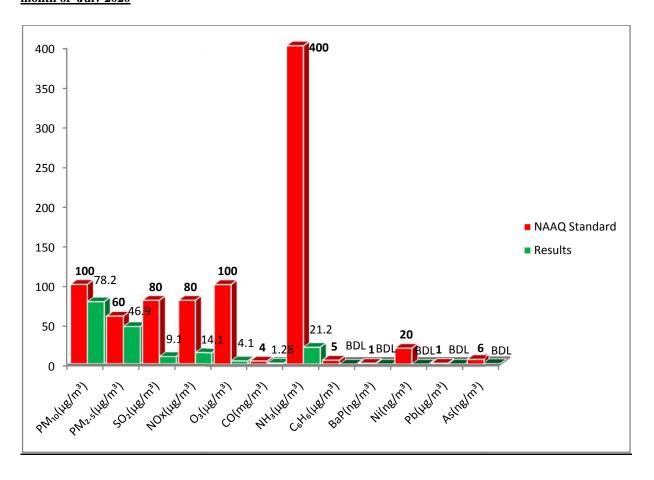
(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

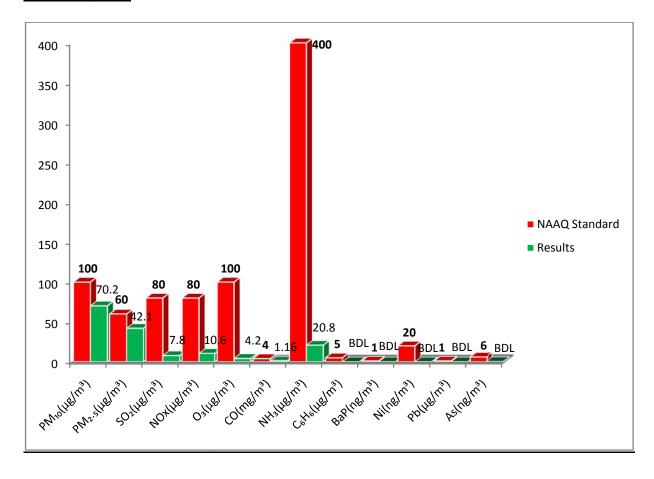
Ref : Envlab/20/R-3725 Date : 07.09.2020

Ammonia as NH ₃	$\mu g / m^3$	VCSPL/SOP- AAQ/001, Dated 01.12.2019 ISC 401, 3 rd ed 1999 Indo Phenol Blue Method	400	21.2	20.8	22.6	21.4
Ozone as O ₃	μg / m ³	VCSPL/SOP- AAQ/001, Dated 01.12.2019 ISC 411, 3 rd ed 1999 Chemical Method	100	4.1	4.2	4.8	4.2
Arsenic as As	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	06	BDL	BDL	BDL	BDL
Lead as Pb	$\mu g / m^3$	IS 5182(Part 22) RA2019 AAS Method After Sampling	01	BDL	BDL	BDL	BDL
Nickel as Ni	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	20	BDL	BDL	BDL	BDL
Benzene as C ₆ H ₆	$\mu g / m^3$	IS 5182 (Part 11):2017 Absorption & Desorption followed by GC analysis	05	BDL	BDL	BDL	BDL
Benzo-Pyrene as Bap	ng/ m ³	IS 5182 (Part 12):2017 Solvent extraction followed by Gas Chromatography analysis	01	BDL	BDL	BDL	BDL

BDL Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $Ni < 0.01 ng/m^3$, $As < 0.001 ng/m^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 ng/m^3$, $Pb < 0.001 \mu g/m^3$, $CO < 0.1 mg/m^3$

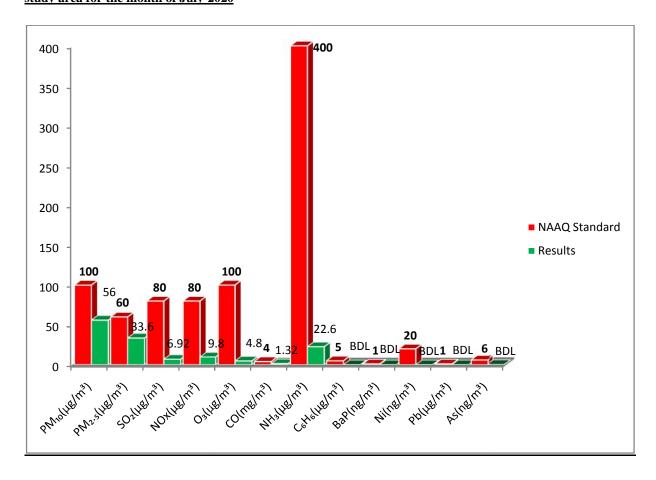

Page No 2 of 2

FERRO ALLOYS CORPORATION LTD, BHADRAK


Figure-01: Graph Showing Avg. AAQ Concentration (AAQMS-1:Near Dispensary) within study area for the month of July 2020

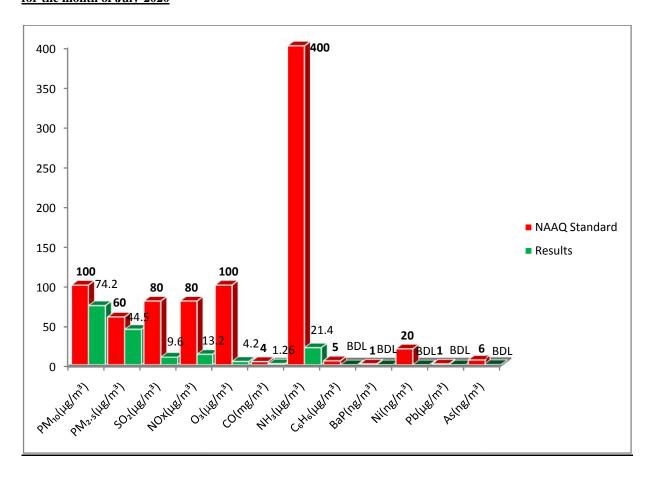
Environmental Monitoring Report

Figure-02: Graph Showing Avg. AAQ Concentration (AAQMS-2:Near Weighbridge) within study area for the month of July-2020



OSTAPAL CHROMITE MINES FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-03: Graph Showing Avg. AAQ Concentration (AAQMS-3: At Middle of the Open Cast Quarry) within study area for the month of July-2020



FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-04: Graph Showing Avg. AAO Concentration (AAOMS-4:At Middle of the COB Plant) within study area for the month of July-2020

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Ref: Envlab/20/R-3727 Date: 07.09.2020

AMBIENT AIR QUALITY(CORE ZONE) MONITORING REPORT- AUGUST 2020

Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK 1.

: OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR 2. Name of the Project

3. Sampling Location : AAQ (Cz)-1: Near Dispensary

AAQ (Cz)-2: Near Weighbridge

AAQ (Cz)-3: At Middle of the Opencast Quarry

AAQ (Cz)-4: At Middle of the COB Plant

Method of Sampling : IS 5182(P-5) 1975 RA 2014 4.

5. Date of Sampling : 10.08.2020

6. Date of Analysis : 12.08.2020 TO 13.08.2020

7. Monitoring Instruments: RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Monitor, VOC Sampler

Sample Collected by : VCSPL Representative in presence of Client's Representative 8.

Parameters Analyzed	Unit	Testing Methods	NAAQ Standard	Analysis Result				
				AAQ(Cz)-1	AAQ(Cz)-2	AAQ(Cz)-3	AAQ(Cz)-4	
Particulate matter(size less than10µm) or PM ₁₀	$\mu g / m^3$	IS 5182 (P-22) 2006 RA 2017 Gravimetric Method	100	80.2	44.5	54.8	76.6	
Particulate matter(size less than 10 µm) or PM _{2.5}	$\mu g / m^3$	VCSPL/AAQ- SOP/001 Date: 01.12.2019 Gravimetric Method	60	48.1	8.1	32.9	46	
Sulphur dioxide as SO ₂	$\mu g / m^3$	IS 5182 (P-2) 2001 RA 2017 Improved West and Geake Method	80	9.4	10.8	7.1	10.1	
Oxides of Nitrogen as NO _x	$\mu g / m^3$	IS 5182 (P-6) 2006 RA 2017 Modified Jacob & Hochheiser Method(Na- Arsenite)	80	13.6	4.1	10.2	13.8	
Carbon Monoxide as CO	mg/m ³	IS 5182 (P-10) 2006 RA 2017 NDIR Spectroscopy	4	1.21	1.21	1.28	1.24	

Visiontek Consultancy Services Pvt. Ltd.

DNV-GL

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

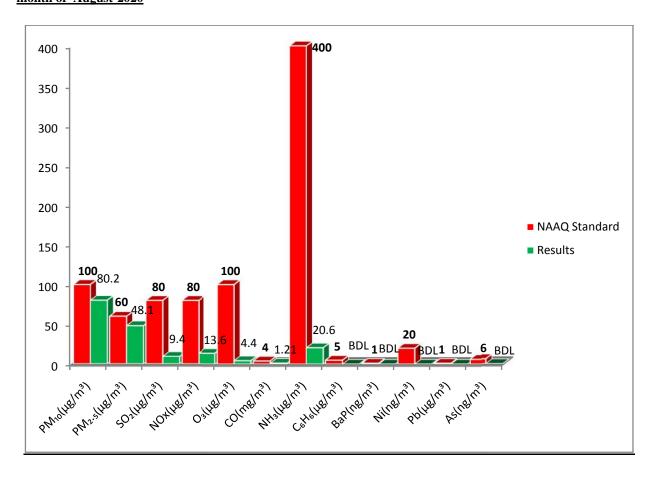
Ref: Envlab/20/R-3727 Date: 07.09.2020

(An Enviro Engineering Consulting Cell)

Ammonia as NH ₃	$\mu g / m^3$	VCSPL/SOP- AAQ/001, Dated 01.12.2019 ISC 401, 3 rd ed 1999 Indo Phenol Blue Method	400	20.6	20.2	21.4	22.1
Ozone as O ₃	$\mu g / m^3$	VCSPL/SOP- AAQ/001, Dated 01.12.2019 ISC 411, 3 rd ed 1999 Chemical Method	100	4.4	4.1	5.1	4.8
Arsenic as As	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	06	BDL	BDL	BDL	BDL
Lead as Pb	$\mu g / m^3$	IS 5182(Part 22) RA2019 AAS Method After Sampling	01	BDL	BDL	BDL	BDL
Nickel as Ni	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	20	BDL	BDL	BDL	BDL
Benzene as C ₆ H ₆	$\mu g / m^3$	IS 5182 (Part 11):2017 Absorption & Desorption followed by GC analysis	05	BDL	BDL	BDL	BDL
Benzo-Pyrene as Bap	ng/ m³	IS 5182 (Part 12):2017 Solvent extraction followed by Gas Chromatography analysis	01	BDL	BDL	BDL	BDL

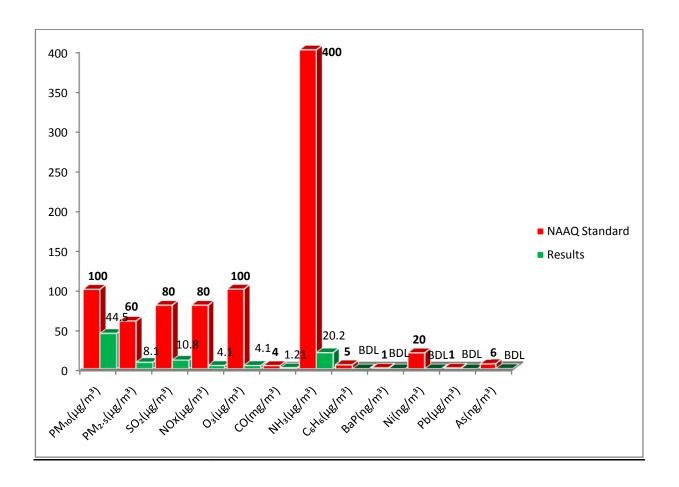
BDL Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $Ni < 0.01 ng/m^3$, $As < 0.001 ng/m^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 ng/m^3$, $Pb < 0.001 \mu g/m^3$, $CO < 0.1 mg/m^3$

Mande



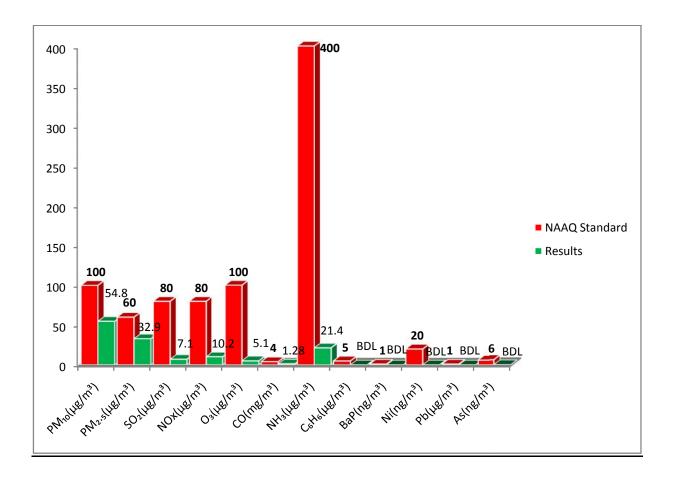
FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-01: Graph Showing Avg. AAQ Concentration (AAQMS-1:Near Dispensary) within study area for the month of August-2020



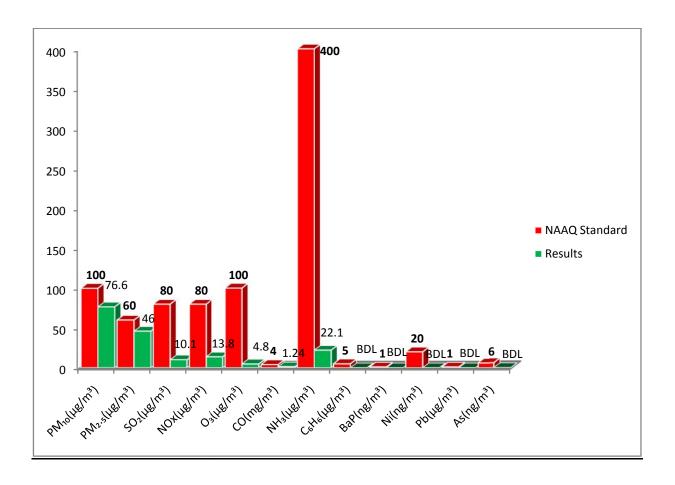
FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-02: Graph Showing Avg. AAQ Concentration (AAQMS-2:Near Weighbridge) within study area for the month of August-2020



FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-03: Graph Showing Avg. AAQ Concentration (AAQMS-3: At Middle of the Open Cast Quarry) within study area for the month of August 2020



FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-04: Graph Showing Avg. AAQ Concentration (AAQMS-4:At Middle of the COB Plant) within study area for the month of August-2020

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref: Envlab/20/R-4624 Date: 10.10.2020

AMBIENT AIR QUALITY (CORE ZONE) MONITORING REPORT-SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : AAQ (Cz)-1: Near Dispensary

AAQ (Cz)-2: Near Weighbridge

AAQ (Cz)-3: At Middle of the Opencast Quarry **AAQ** (Cz)-4: At Middle of the COB Plant

4. Method of Sampling
5. Date of Sampling
1S 5182(P-5) 1975 RA 2014
21.09.2020 & 23.09.2020

6. Date of Analysis : 23.9.2020 to 25.09.2020 & 26.09.2020 to 28.09.2020

7. Monitoring Instruments: RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Monitor, VOC Sampler

8. Sample Collected by : VCSPL Representative in presence of Client's Representative

Parameters Analyzed	Unit	Testing Methods NAAQ Standard	_	Analysis Result				
			AAQ(Cz)-1	AAQ(Cz)-2	AAQ(Cz)-3	AAQ(Cz)-4		
Particulate matter(size less than10μm) or PM ₁₀	$\mu g / m^3$	IS 5182 (P-22) 2006 RA 2017 Gravimetric Method	100	84.6	48.0	60.2	78.0	
Particulate matter(size less than 10 µm) or PM _{2.5}	$\mu g / m^3$	VCSPL/AAQ- SOP/001 Date: 01.12.2019 Gravimetric Method	60	48.1	18.1	32.9	46.0	
Sulphur dioxide as SO ₂	$\mu g / m^3$	IS 5182 (P-2) 2001 RA 2017 Improved West and Geake Method	80	10.2	11.6	8.0	10.6	
Oxides of Nitrogen as NO _x	$\mu g / m^3$	IS 5182 (P-6) 2006 RA 2017 Modified Jacob & Hochheiser Method(Na- Arsenite)	80	14.2	5.2	11.4	14.4	
Carbon Monoxide as CO	mg / m ³	IS 5182 (P-10) 2006 RA 2017 NDIR Spectroscopy	4	1.34	1.28	1.36	1.31	

Visiontek Consultancy Services Pvt. Ltd.

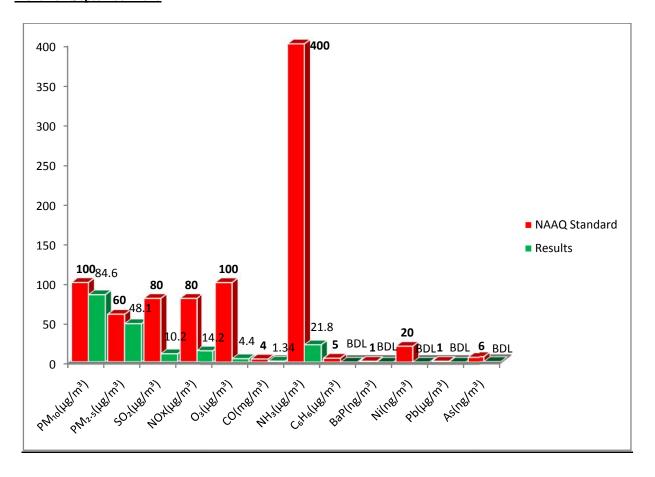
(An Enviro Engineering Consulting Cell)

Ref : Envlab/20/R-4624 Date : 10.10.2020

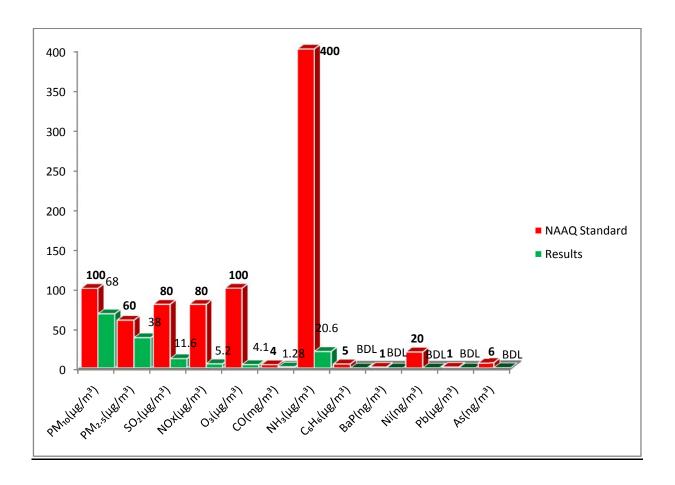
Ammonia as NH ₃	$\mu g / m^3$	VCSPL/SOP- AAQ/001, Dated 01.12.2019 ISC 401, 3 rd ed 1999 Indo Phenol Blue Method	400	21.8	20.6	22.6	23.4
Ozone as O ₃	$\mu g / m^3$	VCSPL/SOP- AAQ/001, Dated 01.12.2019 ISC 411, 3 rd ed 1999 Chemical Method	100	4.4	4.1	5.1	4.8
Arsenic as As	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	06	BDL	BDL	BDL	BDL
Lead as Pb	$\mu g / m^3$	IS 5182(Part 22) RA2019 AAS Method After Sampling	01	BDL	BDL	BDL	BDL
Nickel as Ni	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	20	BDL	BDL	BDL	BDL
Benzene as C ₆ H ₆	$\mu g / m^3$	IS 5182 (Part 11):2017 Absorption & Desorption followed by GC analysis	05	BDL	BDL	BDL	BDL
Benzo-Pyrene as Bap	ng/ m ³	IS 5182 (Part 12):2017 Solvent extraction followed by Gas Chromatography analysis	01	BDL	BDL	BDL	BDL

BDL Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $Ni < 0.01 ng/m^3$, $As < 0.001 ng/m^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 ng/m^3$, $Pb < 0.001 \mu g/m^3$, $CO < 0.1 mg/m^3$

Mande

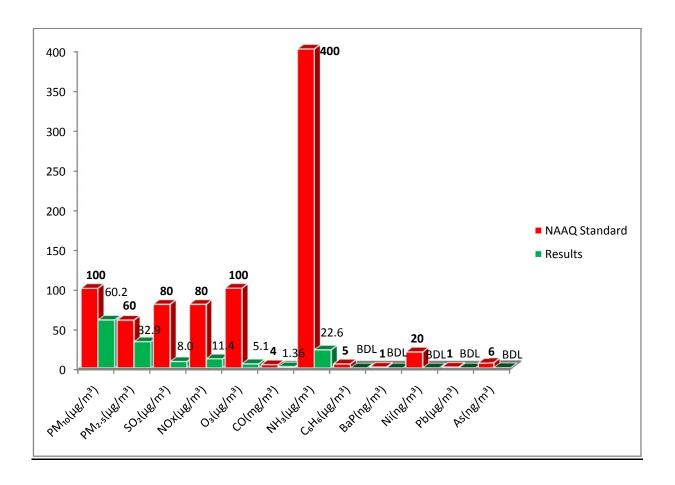


FERRO ALLOYS CORPORATION LTD, BHADRAK


Figure-01: Graph Showing Avg. AAQ Concentration (AAQMS-1:Near Dispensary) within study area for the month of September-2020

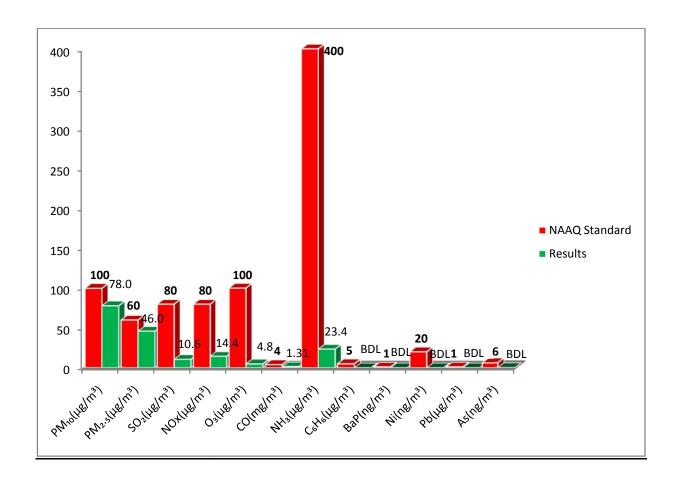
FERRO ALLOYS CORPORATION LTD, BHADRAK

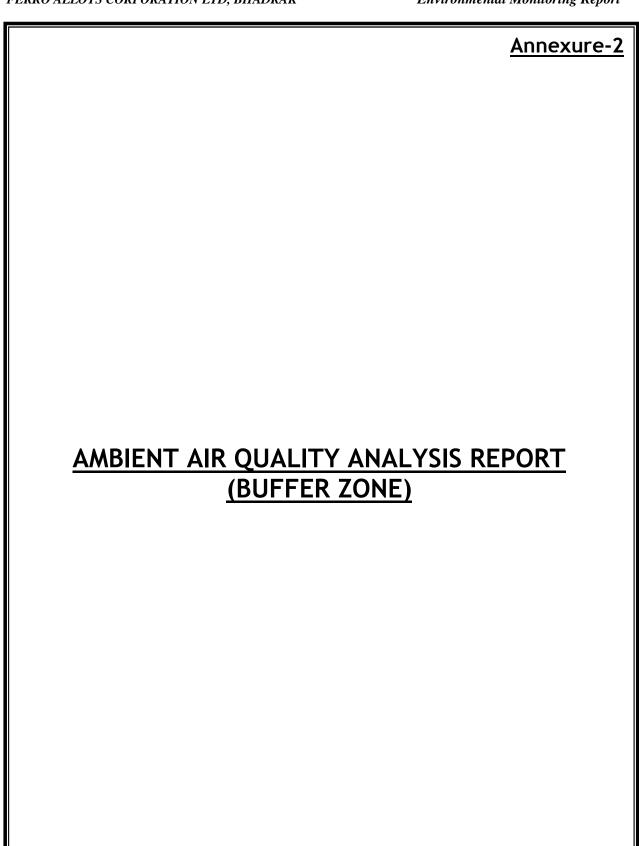
Figure-02: Graph Showing Avg. AAQ Concentration (AAQMS-2:Near Weighbridge) within study area for the month of September-2020



FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-03: Graph Showing Avg. AAQ Concentration (AAQMS-3: At Middle of the Open Cast Quarry) within study area for the month of September -2020





OSTAPAL CHROMITE MINES FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-04: Graph Showing Avg. AAQ Concentration (AAQMS-4:At Middle of the COB Plant) within study area for the month of September-2020

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref : Envlab/20/R-3726 Date : 07.09.2020

AMBIENT AIR QUALITY(BUFFER ZONE) MONITORING REPORT- JULY 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : **AAQ** (**Bz**)-1: Near Village Ostia

AAQ (Bz)-2: Near Village Koiposi AAQ (Bz)-3: Near Kaliapani Township AAQ (Bz)-4: Near Village Ostapal

4. Method of Sampling : IS 5182(P-5) 1975 RA 2014

5. Date of Sampling : 08.07.2020

6. Date of Analysis : 10.07.2020 to 11.07.2020

7. Monitoring Instruments: RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Monitor, VOC Sampler

8. Sample Collected by : VCSPL Representative in presence of Client's Representative

Parameters	Unit	Testing Methods	NAAQ		Analysis Result					
Analyzed		S	Standard	AAQ(Bz)-1	AAQ(Bz)-2	AAQ(Bz)-3	AAQ(Bz)-4			
Particulate matter(size less than10µm) or PM ₁₀	$\mu g / m^3$	IS 5182 (P-22) 2006 RA 2017 Gravimetric Method	100	72.8	59.6	88.2	64.6			
Particulate matter(size less than10µm) or PM _{2.5}	$\mu g / m^3$	VCSPL/AAQ-SOP/001 Date: 01.12.2019 Gravimetric Method	60	38.8	35.8	52.9	38.8			
Sulphur dioxide as SO ₂	$\mu g / m^3$	IS 5182 (P-2) 2001 RA 2017 Improved West and Geake Method	80	8.1	7.2	10.8	8.0			
Oxides of Nitrogen as NO _x	μg / m ³	IS 5182 (P-6) 2006 RA 2017 Modified Jacob & Hochheiser Method(Na-Arsenite)	80	15.72	11.2	18.2	10.8			
Carbon Monoxide as CO	mg/m ³	IS 5182 (P-10) 2006 RA 2017 NDIR Spectroscopy	4	0.56	0.38	1.42	0.44			

Page No 1 of 2

DNV-GL

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

(An Enviro Engineering Consulting Cell)

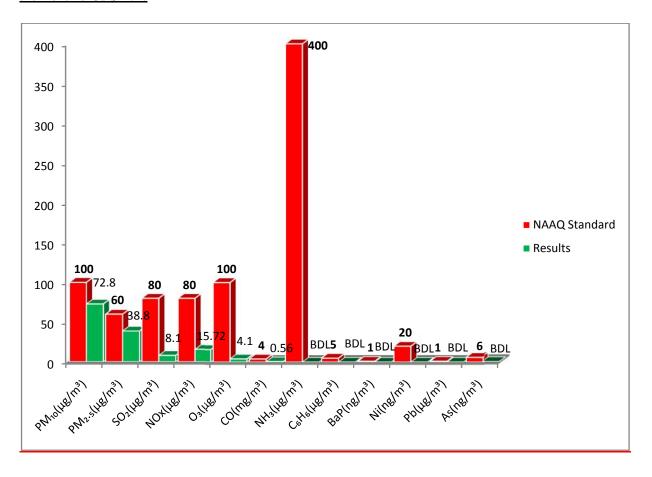
Ref : Envlab/20/R-3726 Date : 07.09.2020

		VCCDI /COD A A O /OO1					
Ammonia as NH ₃	$\mu g / m^3$	VCSPL/SOP-AAQ/001, Dated 01.12.2019 ISC 401, 3rd ed 1999 Indo Phenol Blue Method	400	BDL	BDL	21.8	BDL
Ozone as O ₃	$\mu g / m^3$	VCSPL/SOP-AAQ/001, Dated 01.12.2019 ISC 411, 3rd ed 1999 Chemical Method	100	4.1	BDL	5.2	4.1
Arsenic as As	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	06	BDL	BDL	BDL	BDL
Lead as Pb	$\mu g / m^3$	IS 5182(Part 22) RA2019 AAS Method After Sampling	01	BDL	BDL	BDL	BDL
Nickel as Ni	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	20	BDL	BDL	BDL	BDL
Benzene as C6H6	$\mu g / m^3$	IS 5182 (Part 11):2017 Absorption & Desorption followed by GC analysis	05	BDL	BDL	BDL	BDL
Benzo-Pyrene as Bap	ng/ m ³	IS 5182 (Part 12):2017 Solvent extraction followed by Gas Chromatography analysis	01	BDL	BDL	BDL	BDL

BDL Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $Ni < 0.01 ng/m^3$, $As < 0.001 ng/m^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 ng/m^3$, $Pb < 0.001 \mu g/m^3$, $CO < 0.1 mg/m^3$

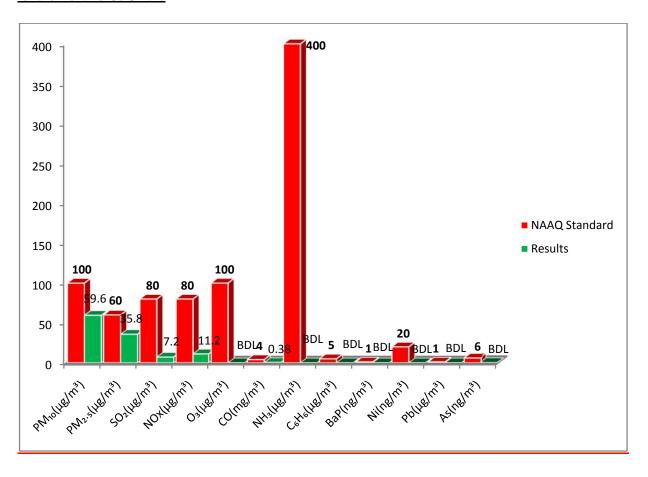
Mande

Puja Mohanly


Page No 2 of 2

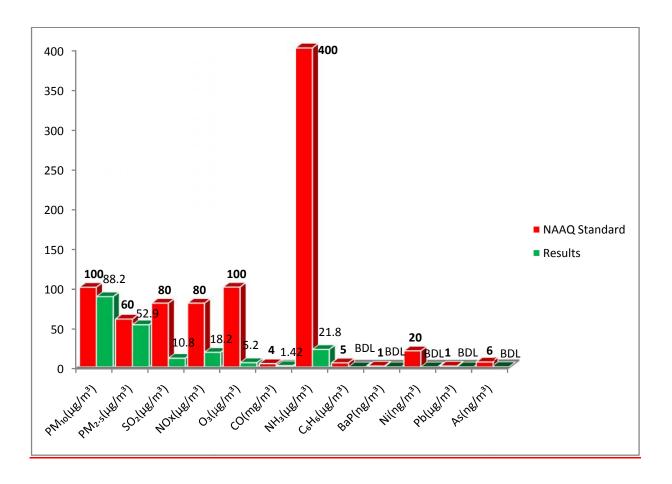
FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-01: Graph Showing Avg. AAQ Concentration (AAQMS (Bz)-1: Near Village Ostia) within study area for the month of July-2020



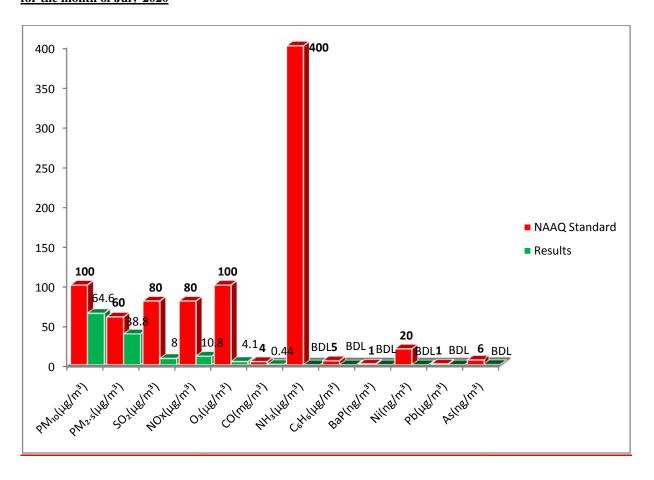
FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-02: Graph Showing Avg. AAQ Concentration (AAQMS(Bz)-2:Near Village Koiposi) within study area for the month of July-2020



FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-03: Graph Showing Avg. AAQ Concentration (AAQMS(Bz)-3:Near Kaliapani Township) within study area for the month of July-2020



FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-04: Graph Showing Avg. AAQ Concentration (AAQMS(Bz)-4:Near Village Ostapal) within study area for the month of July-2020

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref : Envlab/20/R-3728 Date : 07.09.2020

AMBIENT AIR QUALITY (BUFFER ZONE) MONITORING REPORT- AUGUST 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : **AAQ (Bz)-1:** Near Village Ostia

AAQ (Bz)-2: Near Village Koiposi AAQ (Bz)-3: Near Kaliapani Township AAQ (Bz)-4: Near Village Ostapal

4. Method of Sampling : IS 5182(P-5) 1975 RA 2014

5. Date of Sampling : 12.08.2020

6. Date of Analysis : 14.08.2020 TO 15.08.2020

7. Monitoring Instruments: RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Monitor, VOC Sampler

8. Sample Collected by : VCSPL Representative in presence of Client's Representative

Parameters	Unit	Testing Methods	NAAQ		Analysis Result						
Analyzed		, , , , , , , , , , , , , , , , , , ,	Standard	AAQ(Bz)-1	AAQ(Bz)-2	AAQ(Bz)-3	AAQ(Bz)-4				
Particulate matter(size less than 10 µm) or PM ₁₀	$\mu g / m^3$	IS 5182 (P-22) 2006 RA 2017 Gravimetric Method	100	75.2	60.8	89	63.8				
Particulate matter(size less than10µm) or PM _{2.5}	$\mu g / m^3$	VCSPL/AAQ-SOP/001 Date: 01.12.2019 Gravimetric Method	60	40.2	36.5	53.4	38.3				
Sulphur dioxide as SO ₂	$\mu g / m^3$	IS 5182 (P-2) 2001 RA 2017 Improved West and Geake Method	80	8.4	7.8	11.2	8.2				
Oxides of Nitrogen as NO _x	$\mu g / m^3$	IS 5182 (P-6) 2006 RA 2017 Modified Jacob & Hochheiser Method(Na- Arsenite)	80	16.1	11.4	19.1	11.6				
Carbon Monoxide as CO	mg / m ³	IS 5182 (P-10) 2006 RA 2017 NDIR Spectroscopy	4	0.61	0.42	1.48	0.48				

DNV-GL

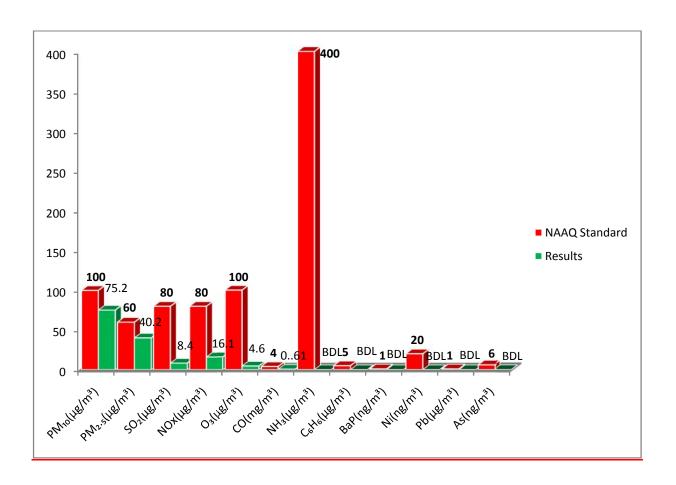
ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

(An Enviro Engineering Consulting Cell)

Ref : Envlab/20/R-3728 Date : 07.09.2020

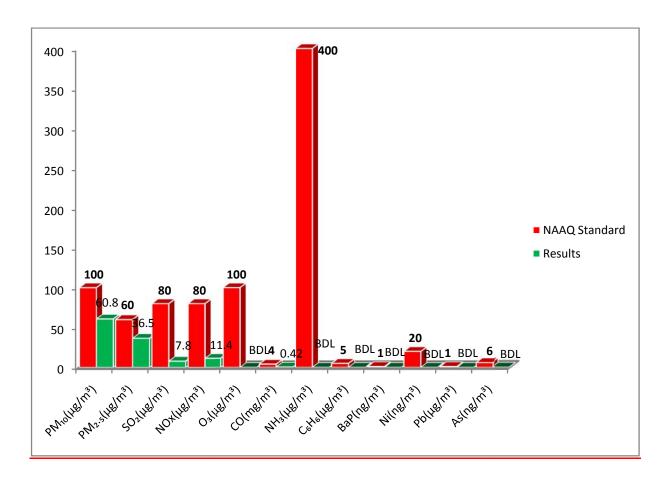
Ammonia as NH ₃	$\mu g / m^3$	VCSPL/SOP-AAQ/001, Dated 01.12.2019 ISC 401, 3rd ed 1999 Indo Phenol Blue Method	400	BDL	BDL	21.8	BDL
Ozone as O ₃	μg/m ³	VCSPL/SOP-AAQ/001, Dated 01.12.2019 ISC 411, 3rd ed 1999 Chemical Method	100	4.6	BDL	5.6	4.2
Arsenic as As	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	06	BDL	BDL	BDL	BDL
Lead as Pb	$\mu g / m^3$	IS 5182(Part 22) RA2019 AAS Method After Sampling	01	BDL	BDL	BDL	BDL
Nickel as Ni	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	20	BDL	BDL	BDL	BDL
Benzene as C6H6	μg/m ³	IS 5182 (Part 11):2017 Absorption & Desorption followed by GC analysis	05	BDL	BDL	BDL	BDL
Benzo-Pyrene as Bap	ng/ m ³	IS 5182 (Part 12):2017 Solvent extraction followed by Gas Chromatography analysis	01	BDL	BDL	BDL	BDL

BDL Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $Ni < 0.01 ng/m^3$, $As < 0.001 ng/m^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 ng/m^3$, $Pb < 0.001 \mu g/m^3$, $CO < 0.1 mg/m^3$



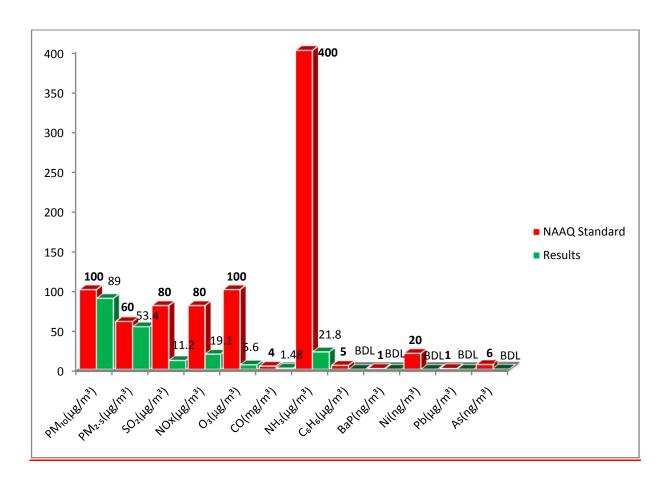
FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-01: Graph Showing Avg. AAQ Concentration (AAQMS (Bz)-1: Near Village Ostia) within study area for the month of August -2020



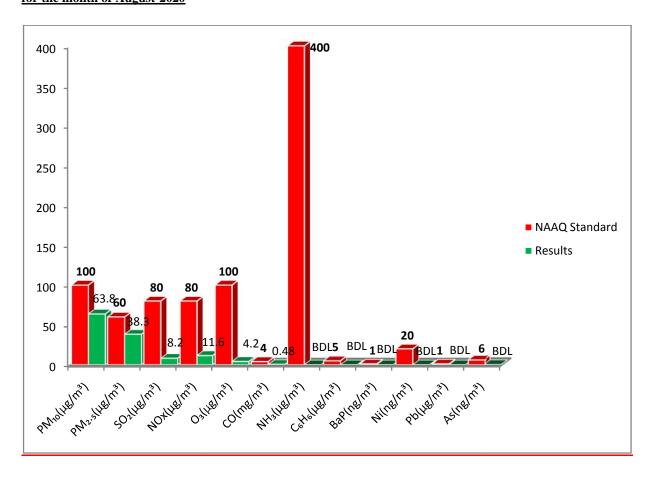
FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-02: Graph Showing Avg. AAQ Concentration (AAQMS(Bz)-2:Near Village Koiposi) within study area for the month of August-2020



FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-03: Graph Showing Avg. AAQ Concentration (AAQMS(Bz)-3:Near Kaliapani Township) within study area for the month of August -2020



FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-04: Graph Showing Avg. AAQ Concentration (AAQMS(Bz)-4:Near Village Ostapal) within study area for the month of August-2020

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref: Envlab/20/R-4625 Date: 10.10.2020

AMBIENT AIR QUALITY (BUFFER ZONE) MONITORING REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : **AAQ** (**Bz**)-1: Near Village Ostia

AAQ (Bz)-2: Near Village Koiposi AAQ (Bz)-3: Near Kaliapani Township AAQ (Bz)-4: Near Village Ostapal

4. Method of Sampling : IS 5182(P-5) 1975 RA 2014

5. Date of Sampling : 22.09.2020

6. Date of Analysis : 25.09.2020 TO 29.09.2020

7. Monitoring Instruments: RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Monitor, VOC Sampler

8. Sample Collected by : VCSPL Representative in presence of Client's Representative

Parameters	Unit	Testing Methods	NAAQ	Analysis Result					
Analyzed		,	Standard	AAQ(Bz)-1	AAQ(Bz)-2	AAQ(Bz)-3	AAQ(Bz)-4		
Particulate matter(size less than10µm) or PM ₁₀	μg/m ³	IS 5182 (P-22) 2006 RA 2017 Gravimetric Method	100	70.08	52.6	84.0	60.2		
Particulate matter(size less than10µm) or PM _{2.5}	μg/m ³	VCSPL/AAQ-SOP/001 Date: 01.12.2019 Gravimetric Method	60	38.0	34.0	50.8	34.0		
Sulphur dioxide as SO ₂	$\mu g / m^3$	IS 5182 (P-2) 2001 RA 2017 Improved West and Geake Method	80	8.1	7.6	11.6	7.8		
Oxides of Nitrogen as NO _x	μg / m ³	IS 5182 (P-6) 2006 RA 2017 Modified Jacob & Hochheiser Method(Na- Arsenite)	80	15.9	11.2	18.4	11.2		
Carbon Monoxide as CO	mg/m ³	IS 5182 (P-10) 2006 RA 2017 NDIR Spectroscopy	4	0.55	0.40	1.36	0.42		

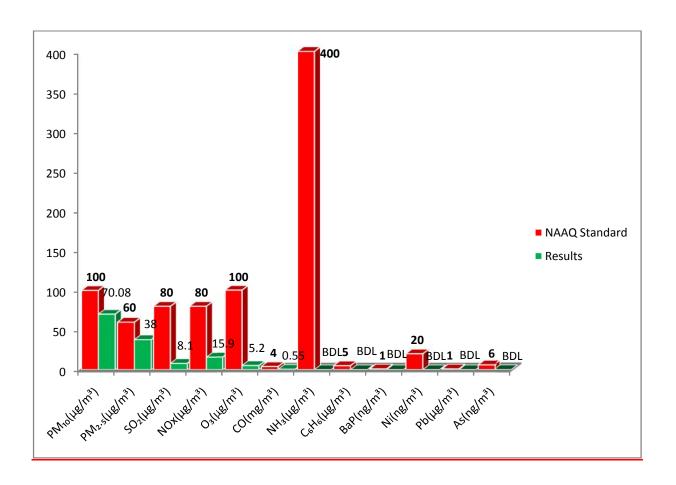
ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

(An Enviro Engineering Consulting Cell)

Ref: Envlab/20/R-4625 Date: 10.10.2020

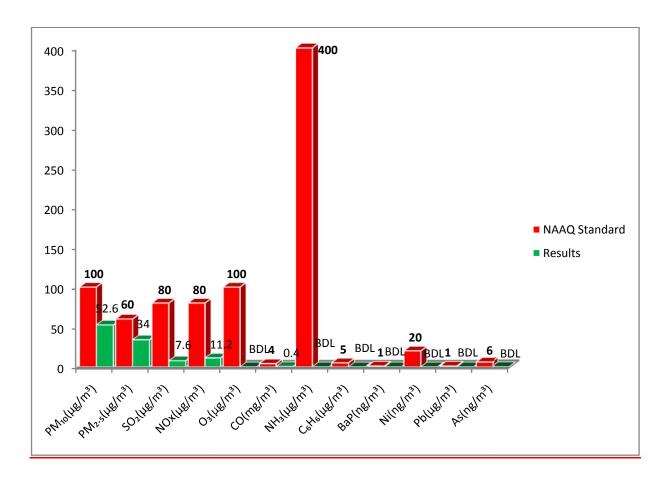
Г)·	1	1	1	1		
Ammonia as NH ₃	$\mu g / m^3$	VCSPL/SOP-AAQ/001, Dated 01.12.2019 ISC 401, 3rd ed 1999 Indo Phenol Blue Method	400	BDL	BDL	20.8	BDL
Ozone as O ₃	$\mu g / m^3$	VCSPL/SOP-AAQ/001, Dated 01.12.2019 ISC 411, 3rd ed 1999 Chemical Method	100	5.2	BDL	5.8	4.4
Arsenic as As	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	06	BDL	BDL	BDL	BDL
Lead as Pb	$\mu g / m^3$	IS 5182(Part 22) RA2019 AAS Method After Sampling	01	BDL	BDL	BDL	BDL
Nickel as Ni	ng/ m ³	IS 5182 (Part-22), RA2019 AAS Method After Sampling	20	BDL	BDL	BDL	BDL
Benzene as C6H6	$\mu g / m^3$	IS 5182 (Part 11):2017 Absorption & Desorption followed by GC analysis	05	BDL	BDL	BDL	BDL
Benzo-Pyrene as Bap	ng/ m ³	IS 5182 (Part 12):2017 Solvent extraction followed by Gas Chromatography analysis	01	BDL	BDL	BDL	BDL

BDL Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $Ni < 0.01 \text{ ng/m}^3$, $As < 0.001 \text{ ng/m}^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 \text{ ng/m}^3$, Pb<0.001 μg/m³, CO-<0.1 mg/m³



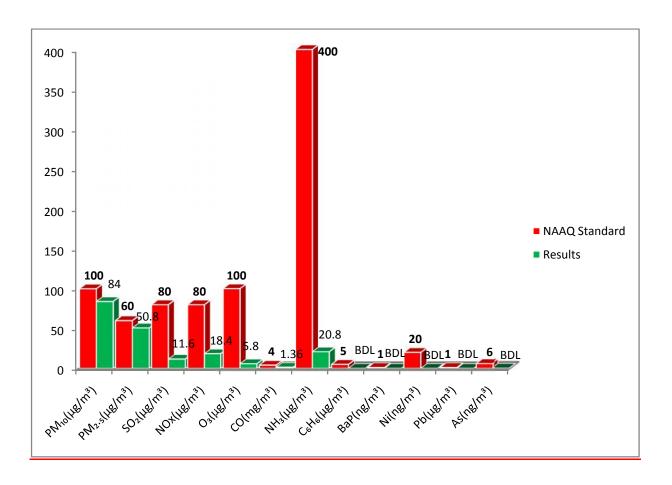
FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-01: Graph Showing Avg. AAQ Concentration (AAQMS (Bz)-1: Near Village Ostia) within study area for the month of September-2020



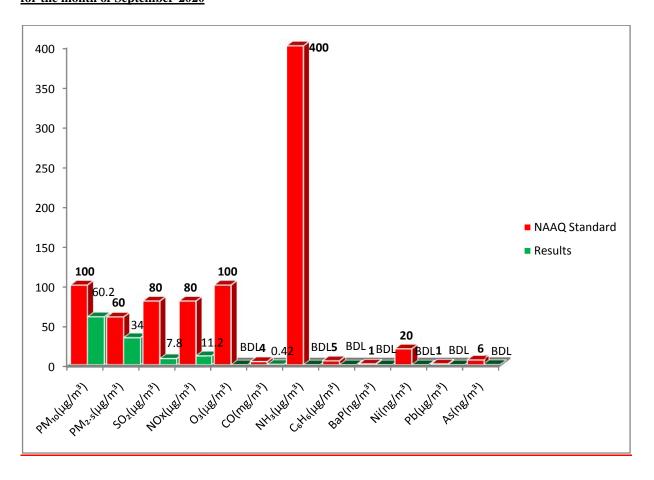
FERRO ALLOYS CORPORATION LTD, BHADRAK

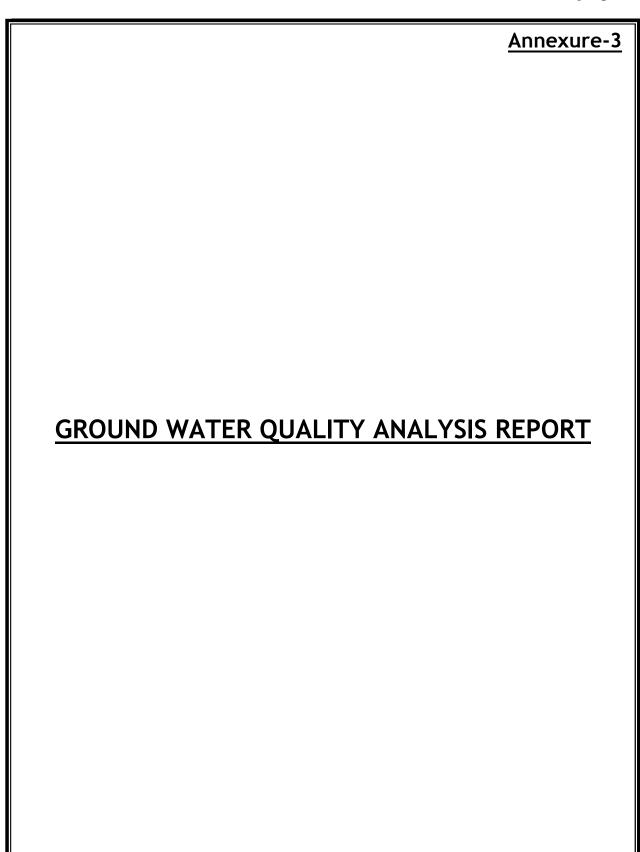
Figure-02: Graph Showing Avg. AAQ Concentration (AAQMS(Bz)-2:Near Village Koiposi) within study area for the month of September-2020



FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-03: Graph Showing Avg. AAQ Concentration (AAQMS(Bz)-3:Near Kaliapani Township) within study area for the month of September-2020





FERRO ALLOYS CORPORATION LTD, BHADRAK

Figure-04: Graph Showing Avg. AAQ Concentration (AAQMS(Bz)-4:Near Village Ostapal) within study area for the month of September-2020

(An Enviro Engineering Consulting Cell)

ISO 14001:2015 ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Ref : Envlab/20/R-4626 Date : 10.10.2020

GROUND WATER QUALITY ANALYSIS REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : **GW1:** Bore well Near Work Shop of the Mines

GW2: Bore Well Near Main Gate of OCM **GW3:** Open Well Near Ostia Village

4. Method of Sampling : APHA 1060 B5. Date of Sampling : 22.09.2020

6. Date of Analysis : 23.09.2020 TO 29.09.2020

7. Sample Collected by : VCSPL Representative in presence of Client's Representative

				Standa	rd as per	A	nalysis Res	ult
Sl. No.	Parameter	Testing Method	Unit		500:2012 n 2015 & 2018			
				Acceptable Limit	Permissible Limit	GW1	GW2	GW3
Essenti	ial Characteristics							
1	Colour	Visual Comparison Method APHA 23 RD Ed,2017: 2120 B, C	Hazen	5	15	<5	<5	<5
2	Odour	Threshold Odour Test APHA 23 RD Ed,2017 :2150 B		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3	Taste	Flavor Threshold Test APHA 23 RD Ed,2017 : 2160 C		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Turbidity	Nephelometric Method APHA 23 RD Ed,2017 :2130 B	NTU	1	5	6.6	6.8	7.4
5	pH Value	pH Meter APHA 23 RD Ed,2017 : 4500H ⁺ B		6.5-8.5	No Relaxation	6.74	6.87	6.88
6	Total Hardness (as CaCO ₃)	EDTA Titrimetric Method APHA 23 RD Ed,2017: 2340 C	mg/l	200	600	182.0	194.0	190.0
7	Iron (as Fe)	By AAS Method APHA 23 RD Ed,2017: 3111, B	mg/l	1.0	No Relaxation	0.26	0.31	0.28
8	Chloride (as Cl)	Argentometric Method APHA 23 RD Ed,2017 : 4500Cl B	mg/l	250	1000	36.0	38.0	44.0
9	Residual, free Chlorine	Iodometric Method APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	ND
Desiral	ble Characteristics							
10	Dissolved Solids	Gravimetric Method APHA 23 RD Ed,2017: 2540 C	mg/l	500	2000	292.0	340.0	280.0
11	Calcium (as Ca)	EDTA Titrimetric Method APHA 23 RD Ed,2017: 3500Ca B	mg/l	75	200	50.8	56.0	60.0
12	Magnesium (as Mg)	Calculation Method APHA 23 RD Ed,2017: 3500Mg B	mg/l	30	100	20.0	24.0	30.0
13	Copper (as Cu)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	< 0.05	< 0.05	< 0.05
14	Manganese (as Mn)	Persulfate Method APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	< 0.05	< 0.05	< 0.05
15	Sulphate (as SO ₄)	Turbidimetric Method APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	30.0	31.0	34.0
16	Nitrate (as NO ₃)	By UV-Screen Method APHA 23 RD Ed,2017: 4500 NO ₃ E	mg/l	45	No Relaxation	6.8	7.2	6.2
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method APHA 23 RD Ed,2017: 4500F C	mg/l	1.0	1.5	0.14	0.16	0.21
18	Phenolic Compounds (as C ₆ H ₅ OH)	Chloroform Extraction by Colorimetric Method APHA 23 RD Ed,2017: 5530 B,D	mg/l	0.001	0.002	< 0.001	< 0.001	<0.001
19	Mercury (as Hg)	AAS Method APHA 23 RD Ed,2017: 3112 B	mg/l	0.001	No Relaxation	< 0.001	< 0.001	< 0.001

DNV-GL

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

(An Enviro Engineering Consulting Cell)

Ref : Envlab/20/R-4626 Date : 10.10.2020

20	Cadmium (as Cd)	AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.003	No Relaxation	< 0.001	< 0.001	< 0.001
21	Selenium (as Se)	By AAS Method APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.01	No Relaxation	< 0.01	< 0.01	< 0.01
22	Arsenic (as As)	By AAS Method APHA 23 RD Ed,2017: 3114 B	mg/l	0.01	No Relaxation	< 0.01	< 0.01	< 0.01
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method APHA 23 RD Ed,2017: 4500 CN ⁻ C,D	mg/l	0.05	No Relaxation	< 0.01	<0.01	<0.01
24	Lead (as Pb)	By AAS Method APHA 23 RD Ed,2017 3111 B	mg/l	0.01	No Relaxation	< 0.01	< 0.01	< 0.01
25	Zinc (as Zn)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	5	15	1.2	1.4	1.6
26	Anionic Detergents (as MBAS)	Anionic Surfactants as MBAS APHA 23RD Ed,2017: 5540 C	mg/l	0.2	1	ND	ND	ND
27	Mineral Oil	Partition-Gravimetric Method APHA 23 RD Ed,2017: 5520 B	mg/l	0.5	No Relaxation	ND	ND	ND
28	Alkalinity	Titration Method APHA 23 RD Ed,2017:2320 B	mg/l	200	600	190.0	210.0	180.0
29	Aluminium as(Al)	AAS Method APHA 23 RD Ed,2017: 3111 D	mg/l	0.03	0.2	< 0.01	< 0.01	< 0.01
30	Boron (as B)	Curcumin Method APHA 23 RD Ed,2017: 4500B, B	mg/l	0.5	2.4	0.51	< 0.1	<0.1
31	Total Coliform as TC	MPN Method APHA 23 RD Ed,2017: 9221 b	MPN/ 100ml	Shall not be detectable in any 100ml sample		<1.8	<1.8	<1.8

CL - Colourless, U/O - Unobjectionable, ND - Not detected.

BDL (Below detection limit) Values :(Cu<0.05 mg/l, Mn<0.005 mg/l, C₆H₃OH<0.001 mg/l, Hg<0.005mg/l, Cd<0.001 mg/l, Se<0.001 mg/l, As<0.001 mg/l, As<0.001 mg/l, Zn<0.05 mg/l, Cl⁺⁶<0.05 mg/l, Al<0.001 mg/l, B<0.01 mg/l, NO₃<0.01 mg/l)

Manda

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref : Envlab/20/R-4627 Date : 10.10.2020

GROUND WATER QUALITY ANALYSIS REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : GW4: Open Well Near Ostapal Village

GW5: Tube Well inside the Shiva Temple of Village Gurujanga **GW6:** Tube Well outside Shiva Temple of Village Gurujanga

4. Method of Sampling : APHA 1060 B5. Date of Sampling : 22.09.2020

6. Date of Analysis : 23.09.2020 TO 29.09.2020

7. Sample Collected by : VCSPL Representative in presence of Client's Representative

	7. Sample Colle	cted by : VCSPL Represe	ntative i	n presence	of Client's	•			
					d as per	Analysis Resu		ılt	
Sl. No.	Parameter	Testing Method	Unit		00:2012 2015 & 2018				
		J		Acceptable Limit	Permissible Limit	GW4	GW5	GW6	
Essential	Characteristics			1					
1	Colour	Visual Comparison Method APHA 23 RD Ed,2017: 2120 B, C	Haze n	5	15	<5	<5	<5	
2	Odour	Threshold Odour Test APHA 23 RD Ed,2017 :2150 B		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	
3	Taste	Flavor Threshold Test APHA 23 RD Ed,2017 : 2160 C		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	
4	Turbidity	Nephelometric Method APHA 23 RD Ed,2017 :2130 B	NTU	1	5	6.8	7.4	7.8	
5	pH Value	pH Meter APHA 23 RD Ed,2017 : 4500H ⁺ B		6.5-8.5	No Relaxation	7.2	7.42	7.41	
6	Total Hardness (as CaCO ₃)	EDTA Titrimetric Method APHA 23 RD Ed,2017: 2340 C	mg/l	200	600	110.0	90.0	60.0	
7	Iron (as Fe)	By AAS Method APHA 23 RD Ed,2017: 3111, B	mg/l	1.0	No Relaxation	0.24	0.21	0.18	
8	Chloride (as Cl)	Argentometric Method APHA 23 RD Ed,2017 : 4500Cl B	mg/l	250	1000	42.0	50.0	48.0	
9	Residual, free Chlorine	Iodometric Method APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	ND	
Desirable	Characteristics			1					
10	Dissolved Solids	Gravimetric Method APHA 23 RD Ed,2017: 2540 C	mg/l	500	2000	190.0	110.0	90.0	
11	Calcium (as Ca)	EDTA Titrimetric Method APHA 23 RD Ed,2017 : 3500Ca B	mg/l	75	200	42.0	30.0	24.0	
12	Magnesium (as Mg)	Calculation Method APHA 23 RD Ed,2017: 3500Mg B	mg/l	30	100	21.2	12.8	10.8	
13	Copper (as Cu)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	< 0.05	< 0.05	< 0.05	
14	Manganese (as Mn)	Persulfate Method APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	< 0.05	< 0.05	< 0.05	
15	Sulphate (as SO ₄)	Turbidimetric Method APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	4.2	4.6	3.2	
16	Nitrate (as NO ₃)	By UV-Screen Method APHA 23 RD Ed,2017: 4500 NO ₃ E	mg/l	45	No Relaxation	1.1	0.72	0.61	
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method APHA 23 RD Ed,2017: 4500F C	mg/l	1.0	1.5	0.011	0.014	0.012	
18	Phenolic Compounds (as C ₆ H ₅ OH)	Chloroform Extraction by Colorimric Method APHA 23 RD Ed,2017: 5530 B,D	mg/l	0.001	0.002	< 0.001	< 0.001	< 0.001	
19	Mercury (as Hg)	AAS Method APHA 23 RD Ed,2017: 3112 B	mg/l	0.001	No Relaxation	< 0.001	< 0.001	< 0.001	
20	Cadmium (as Cd)	AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.003	No Relaxation	< 0.001	< 0.001	< 0.001	
21	Selenium (as Se)	By AAS Method APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.01	No Relaxation	< 0.01	< 0.01	< 0.01	

ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

ISO 9001: 2015 ISO 14001: 2015

(An Enviro Engineering Consulting Cell)

Ref: Envlab/20/R-4627 Date: 10.10.2020

22	Arsenic (as As)	By AAS Method APHA 23 RD Ed,2017: 3114 B	mg/l	0.01	No Relaxation	< 0.01	< 0.01	< 0.01
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method APHA 23 RD Ed,2017: 4500 CN ⁻ C,D	mg/l	0.05	No Relaxation	< 0.05	< 0.05	< 0.05
24	Lead (as Pb)	By AAS Method APHA 23 RD Ed,2017 3111 B	mg/l	0.01	No Relaxation	< 0.01	< 0.01	< 0.01
25	Zinc (as Zn)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	5	15	2.6	3.2	3.8
26	Anionic Detergents (as MBAS)	Anionic Surfactants as MBAS APHA 23RD Ed,2017: 5540 C	mg/l	0.2		ND	ND	ND
27	Mineral Oil	Partition-Gravimetric Method APHA 23 RD Ed,2017: 5520 B	mg/l	0.5	No Relaxation	ND	ND	ND
28	Alkalinity	Titration Method APHA 23 RD Ed,2017:2320 B	mg/l	200	600	88.0	28.0	20.0
29	Aluminium as(Al)	AAS Method APHA 23 RD Ed,2017: 3111 D	mg/l	0.03	0.2	< 0.01	< 0.01	< 0.01
30	Boron (as B)	Curcumin Method APHA 23 RD Ed,2017: 4500B, B	mg/l	0.5	2.4	< 0.1	< 0.1	< 0.1
31	Total Coliform as TC	MPN Method APHA 23 RD Ed,2017: 9221 b	MPN/ 100m 1	Shall not be detectable in any 100ml sample		<1.8	<1.8	<1.8

CL - Colourless, U/O - Unobjectionable, ND - Not detected. $\begin{array}{l} \textbf{\textit{BDL (Below detection limit) Values :}} (Cu < 0.05 \text{ mg/l}, Mn < 0.005 \text{ mg/l}, C_6H_5OH < 0.001 \text{ mg/l}, Hg < 0.005 \text{mg/l}, Cd < 0.001 \text{ mg/l}, Se < 0.001 \text{ mg/l}, As < 0.001 \text{ mg/l}, Pb < 0.01 \text{ mg/l}, Zn < 0.05 \text{ mg/l}, Cr^{+6} < 0.05 \text{ mg/l}, Al < 0.001 \text{ mg/l}, B < 0.01 \text{ mg/l}, NO_3 < 0.01 \text{ mg/l},$

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Ref: Envlab/20/R-4628 Date: 10.10.2020

GROUND WATER QUALITY ANALYSIS REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. **Sampling Location** : **GW7:** Eastern Side of the Quarry (PZ-1)

> **GW8:** Southern Side of the Quarry (PZ-2) **GW9:** Western Side of the Quarry (PZ-3)

4. Method of Sampling : APHA 1060 B 5. **Date of Sampling** : 22.09.2020

Date of Analysis : 23.09.2020 TO 29.09.2020 6.

Sample Collected by · VCSPI Representative in presence of Client's Representative

	7. Sample Collection	cted by : VCSPL Represe	ntative i	n presence	of Client's	s Representa	ative	
					d as per	A	nalysis Resu	lt
Sl. No.	Parameter	Testing Method	Unit	IS -1056 Amended on	00:2012 2015 & 2018	CWE	CWO	CIVO
				Permissible Limit	Permissible Limit	GW7	GW8	GW9
Essential	Characteristics						<u>I</u>	
1	Colour	Visual Comparison Method APHA 23 RD Ed,2017: 2120 B, C	Haze n	5	15	<5	<5	<5
2	Odour	Threshold Odour Test APHA 23 RD Ed,2017 :2150 B		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3	Taste	Flavor Threshold Test APHA 23 RD Ed,2017 : 2160 C		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Turbidity	Nephelometric Method APHA 23 RD Ed,2017 :2130 B	NTU	1	5	6.88	7.44	7.82
5	pH Value	pH Meter APHA 23 RD Ed,2017 : 4500H ⁺ B		6.5-8.5	No Relaxation	7.31	7.5	7.49
6	Total Hardness (as CaCO ₃)	EDTA Titrimetric Method APHA 23 RD Ed,2017: 2340 C	mg/l	200	600	124.0	110.0	80.0
7	Iron (as Fe)	By AAS Method APHA 23 RD Ed,2017: 3111, B	mg/l	1.0	No Relaxation	0.29	0.18	0.12
8	Chloride (as Cl)	Argentometric Method APHA 23 RD Ed,2017 : 4500Cl B	mg/l	250	1000	38.0	42.0	41.0
9	Residual, free Chlorine	Iodometric Method APHA 23 RD Ed,2017 : 4500Cl, B	mg/l	0.2	1	ND	ND	ND
Desirable	Characteristics			•			•	
10	Dissolved Solids	Gravimetric Method APHA 23 RD Ed,2017: 2540 C	mg/l	500	2000	210.0	198.0	146.0
11	Calcium (as Ca)	EDTA Titrimetric Method APHA 23 RD Ed,2017: 3500Ca B	mg/l	75	200	48.0	36.0	32.0
12	Magnesium (as Mg)	Calculation Method APHA 23 RD Ed,2017: 3500Mg B	mg/l	30	100	18.0	10.2	9.2
13	Copper (as Cu)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	< 0.05	< 0.05	< 0.05
14	Manganese (as Mn)	Persulfate Method APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	< 0.05	< 0.05	< 0.05
15	Sulphate (as SO ₄)	Turbidimetric Method APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	200	400	3.2	4.8	3.1
16	Nitrate (as NO ₃)	By UV-Screen Method APHA 23 RD Ed,2017: 4500 NO ₃ E	mg/l	45	No Relaxation	1.2	0.84	0.74
17	Fluoride (as F)	Distillation followed by Spectrophotometric Method APHA 23 RD Ed,2017: 4500F C	mg/l	1.0	1.5	0.012	0.016	0.013
18	Phenolic Compounds (as C ₆ H ₅ OH)	Chloroform Extraction by Colorimric Method APHA 23 RD Ed,2017: 5530 B,D	mg/l	0.001	0.002	< 0.001	<0.001	< 0.001
19	Mercury (as Hg)	AAS Method APHA 23 RD Ed,2017: 3112 B	mg/l	0.001	No Relaxation	< 0.001	< 0.001	< 0.001
20	Cadmium (as Cd)	AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.003	No Relaxation	< 0.001	< 0.001	< 0.001
21	Selenium (as Se)	By AAS Method APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.01	No Relaxation	< 0.01	< 0.01	< 0.01

ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

(An Enviro Engineering Consulting Cell)

Ref: Envlab/20/R-4628 Date: 10.10.2020

22	Arsenic (as As)	By AAS Method	mg/l	0.01	No	<0.01	< 0.01	< 0.01
22	Alselle (as As)	APHA 23 RD Ed,2017: 3114 B	IIIg/1	0.01	Relaxation	<0.01	<0.01	<0.01
23	Cyanide (as CN)	Distillation followed by Spectophotometric Method APHA 23 RD Ed,2017: 4500 CN ⁻ C,D	mg/l	0.05	No Relaxation	< 0.05	< 0.05	< 0.05
24	Lead (as Pb)	By AAS Method APHA 23 RD Ed,2017 3111 B	mg/l	0.01	No Relaxation	< 0.01	< 0.01	< 0.01
25	Zinc (as Zn)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	5	15	3.8	4.2	4.6
26	Anionic Detergents (as MBAS)	Anionic Surfactants as MBAS APHA 23RD Ed,2017: 5540 C	mg/l	0.2		ND	ND	ND
27	Mineral Oil	Partition-Gravimetric Method APHA 23 RD Ed,2017: 5520 B	mg/l	0.5	No Relaxation	ND	ND	ND
28	Alkalinity	Titration Method APHA 23 RD Ed,2017:2320 B	mg/l	200	600	52.0	40.0	26.0
29	Aluminium as(Al)	AAS Method APHA 23 RD Ed,2017: 3111 D	mg/l	0.03	0.2	< 0.01	< 0.01	< 0.01
30	Boron (as B)	Curcumin Method APHA 23 RD Ed,2017: 4500B, B	mg/l	0.5	2.4	< 0.1	< 0.1	< 0.1
31	Total Coliform as TC	MPN Method APHA 23 RD Ed,2017: 9221 b	MPN/ 100m 1	Shall not be detectable in any 100ml sample		<1.8	<1.8	<1.8

CL - Colourless, U/O - Unobjectionable, ND - Not detected. $\begin{array}{l} \textbf{\textit{BDL (Below detection limit) Values:}} (Cu<0.05 \text{ mg/l}, Mn<0.005 \text{ mg/l}, C_6H_5OH<0.001 \text{ mg/l}, Hg<0.005 \text{mg/l}, Cd<0.001 \text{ mg/l}, Se<0.001 \text{ mg/l}, As<0.001 \text{ mg/l}, As<0.001 \text{ mg/l}, Zn<0.05 \text{ mg/l}, Cr^{+6}<0.05 \text{ mg/l}, Al<0.001 \text{ mg/l}, B<0.01 \text{ mg/l}, NO_3<0.01 \text{ mg/l}, NO_3<0.01 \text{ mg/l}, Al<0.001 \text{$

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref: Envlab/20/R-4635 Date: 10.10.2020

MEASUREMENT OF GROUND WATER QUALITY ANALYSIS REPORT SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location :**GW1:** Bore well Near Workshop of the Mines

GW2: Bore well Near Main GateGW3: Open Well Near Ostia VillageGW4: Open Well Near Ostapal Village

GW5: Tube Well Inside Shiv Temple of Gurujanga Village

4. Method of Sampling5. Date of Sampling22.09.2020

6. Date of Analysis : 23.09.2020 TO 29.09.2020

7. Sample Collected by : VCSPL Representative in presence of Client's Representative

Sl. No.	Parameter	Testing Method		Standard as per			Analysis Result				
			Unit IS -1050 Amended on		00:2012 2015 & 2018	GW1	GW2	GW3	GW4	GW5	
				Acceptable Limit	Permissible Limit	GWI	GWZ	GWS	GW4	GWS	
1	Hexavalent Chromium as Cr ⁶⁺	By AAS Method APHA 23 RD Ed,2017: 3500 Cr B	mg/l			BDL	BDL	BDL	BDL	BDL	

BDL Value : Cr^{6+} < 0.05 mg/l

Manda

Paja Mohanly

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref : Envlab/20/R-4636 Date : 10.10.2020

MEASUREMENT OF GROUND WATER QUALITY ANALYSIS REPORT SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location :**GW6**: Tube Well Outside Shiv Temple of Gurujanga Village

GW7: Eastern Side of the Quarry (PZ-1) **GW8:** Southern Side of the Quarry (PZ-2) **GW9:** Western Side of the Quarry (PZ-3)

4. Method of Sampling : APHA 1060 B5. Date of Sampling : 22.09.2020

6. Date of Analysis : 23.09.2020 TO 29.09.2020

7. Sample Collected by : VCSPL Representative in presence of Client's Representative

Sl. No.		Testing Method		Standar	d as per		Analysis Result		
	Parameter				IS -10500:2012 Amended on 2015 & 2018		GW7	GW8	GW9
				Acceptable Limit	Permissible Limit	GW6	GW7	GW6	GWA
1	Hexavalent Chromium as Cr	By AAS Method APHA 23 RD Ed,2017: 3500 Cr B	mg/l			BDL	BDL	BDL	BDL

BDL Value: Cr6⁺ < 0.05 mg/l

Environmental Monitoring Report

Annexure-4
EFFLUENT WATER QUALITY ANALYSIS REPORT

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref : Envlab/20/R-4629 Date : 10.10.2020

EFFLUENT WATER DISCHARGE ANALYSIS REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : **EW1:** ETP Outside Discharge Point

4. Method of Sampling : APHA 1060 B5. Date of Sampling : 22.09.2020

6. Date of Analysis : 23.09.2020 TO 29.09.2020

7. Sample Collected by : VCSPL Representative in presence of Client's Representative

Sl. No.	Parameters	Testing Methods	Unit	Standards (In land Surface water)	Analysis Results EW-1
1	Colour	Visual Comparison Method APHA 2120 B; 23 rd Edition, 2017	Hazen	Colourless	05
2	Odour	Threshold Odour Method APHA 2150 B; 23 rd Edition, 2017		Odourless	Pungent Smell
3	pH at 25°C	pH Meter APHA 4500 H ⁺ B; 23 rd Edition, 2017		5.5-9.0	7.88
4	Total Suspended Solids	Gravimetric Method APHA 2540 D; 23 rd Edition, 2017	mg/l	100	20.0
5	Copper as Cu	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	3	< 0.05
6	Fluoride as F	Distillation followed by Spectophotometric Method APHA 4500 F C,D; 23 rd Edition, 2017	mg/l	2	0.31
7	Total Residual Chlorine	Iodometric Method APHA 23RD Ed,2017 : 4500Cl, B	mg/l	1	ND
8	Iron as Fe	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	3	0.48
9	Manganese as Mn	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	2	< 0.05
10	Nitrate as NO ₃	By UV-Screen Method APHA 4500 NO ₃ B; 23 rd Edition, 2017	mg/l	10	8.2
11	Phenolic Compounds as C ₆ H ₅ OH	Distillation Followed by Spectophotometric Method APHA 5530-B, D; 23 rd Edition, 2017	mg/l	1	< 0.001
12	Selenium as Se	By AAS Method APHA 3500 Se C; 23 rd Edition, 2017	mg/l	0.05	< 0.01
13	Cadmium as Cd	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	2.0	< 0.001
14	Cyanide as CN	Distillation Followed by Spectophotometric Method APHA 4500 –CN-C,E; 23 rd Edition, 2017	mg/l	0.2	<0.05
15	Lead as Pb	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	0.1	< 0.01
16	Mercury as Hg	By AAS Method APHA 3112 B; 23 rd Edition, 2017	mg/l	0.01	< 0.001
17	Nickel as Ni	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	3	< 0.05
18	Arsenic as As	By AAS Method APHA 3114 B; 23 rd Edition, 2017	mg/l	0.2	< 0.05
19	Total Chromium as Cr	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	2	0.34
20	Zinc as Zn	By AAS Method APHA 3111 B; 23 rd Edition, 2017	mg/l	5	0.028
21	Hexavalent Chromium as Cr^{+6}	By AAS Method APHA 3500 Cr B; 23 rd Edition, 2017	mg/l	0.1	< 0.001
22	Vanadium as V	By AAS Method APHA 3500 V; 23 rd Edition, 2017	mg/l	0.2	< 0.001
23	Temperature	By Thermometer APHA 2550 B; 23 rd Edition, 2017	°C	Shall not exceed 5°C above the receiving water temperature	28
24	Dissolved Oxygen	Modified Winkler Method APHA 4500 O. C; 23 rd Edition, 2017	mg/l		7.4

DNV-GL

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025:2005

(An Enviro Engineering Consulting Cell)

Ref : Envlab/20/R-4629 Date : 10.10.2020

25	Biochemical Oxygen Demand as BOD	Oxygen Depletion Method IS 3025 (Part 44):2003	mg/l	30	6.3
26	Chemical Oxygen Demand as COD	Open Reflux Method APHA 5220 B; 23 rd Edition, 2017	mg/l	250	20.0
27	Oil & Grease	Gravimetric Method (Solvent Extraction) APHA 5520 B; 23 rd Edition, 2017	mg/l	10	5.2
29	Ammonical Nitrogen as N By TKN Method APHA 4500-NH ₃ C; 23rd Edition,		mg/l	50	1.8
30	Total Kjeldahl Nitrogen as N	By TKN Method APHA 4500-N _{org} C; 23rd Edition, 2017	mg/l	100	5.4
31	Sulphide as S	By Methylene Blue Method APHA 4500-S D; 23rd Edition, 2017	mg/l	2	< 0.001
32	Free Ammonia as NH ₃	By Calculation	mg/l	10	4.6
33	Particulate Size of Suspended Solids	Gravimetric Method APHA 2540 D; 23 rd Edition, 2017	μ	Shall pass 850 micron IS Sieve	<850
34	Bio-assay Test	Evaluating Acute Toxicity IS 6582 (P-2) 2008	%	90% survival of fish after 96 hours in 100% effluent	90% Survival of Fish after 96 Hrs in 100% Effluent

Mande

Puja Mohanly

(An Enviro Engineering Consulting Cell)

ISO 14001;2015 ISO 45001;2018 (OH&S) ISO/IEC 17025;2005

Ref : Envlab/20/R-4637 Date : 10.10.2020

SURFACE WATER QUALITY ANALYSIS REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR
3. Sampling Location : SW1: Damsala Nallah Upstream Water (100 mtr Up)

3. Sampling Location : **SW1:** Damsala Nallah Upstream Water (100 mtr Up) **SW2:** Damsala Nallah Downstream Water (100 mtr Up)

(with impact of other mines discharge)

4. Method of Sampling : APHA 1060 B5. Date of Sampling : 23.09.2020

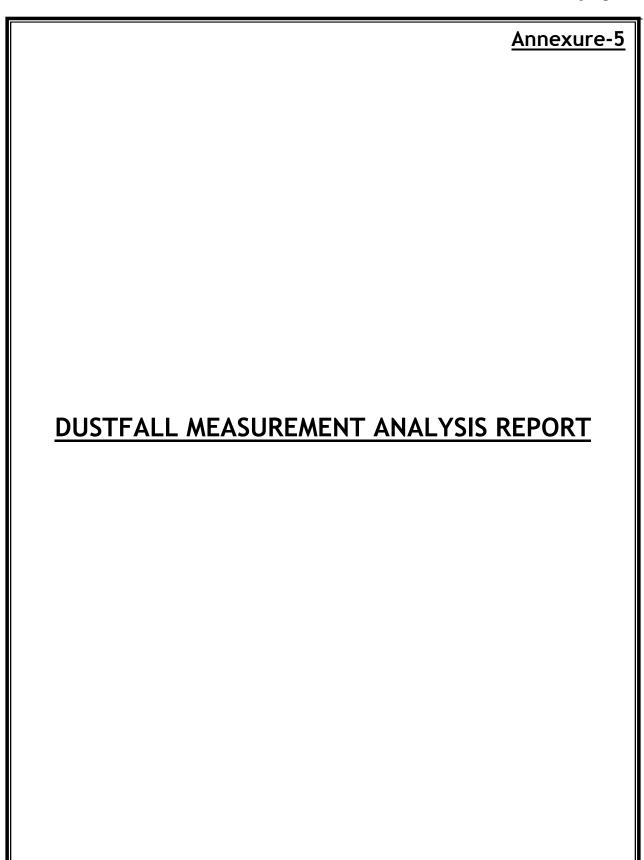
6. Date of Analysis : **24.09.2020 TO 30.09.2020**

7. Sample Collected by : VCSPL Representative in presence of Client's Representative

Sl.	Parameter	eter Testing Method	Unit	Standards as per IS-2296:1992 Class –'C'	Analysis Results	
No	T ut unicee	resting Method			SW-1	SW-2
1	Colour (max)	Visual Comparison Method APHA 23 RD Ed,2017 : 2120 B, C	Hazen	300	<5	5
2	pH Value	pH Meter APHA 23 RD Ed,2017 : 4500H ⁺ B		6.0-9.0	7.41	7.28
3	Suspended solids	Gravimetric Method APHA 23 RD Ed,2017 : 2540 D	mg/l		44.0	78.0
4	Dissolved Oxygen (minimum)	Modified Winkler Method APHA 23 RD Ed,2017: 2540 C	mg/l	4.0	7.2	7.0
5	Turbidity	Nephelometric Method APHA 23 RD Ed,2017: 2130 B	NTU		7.0	10.0
6	Chloride (max)	Titrimetric Method APHA 23 RD Ed,2017: 4500Cl ⁻ B	mg/l	600	7.6	8.4
7	Total Dissolved Solids	Gravimetric Method APHA 23 RD Ed,2017: 2540 C	mg/l	1500	88.0	102.0
8	BOD (3) days at 27°C (max)	IS 3025(P-44): 1993 RA 2003	mg/l	3.0	BDL	BDL
9	Arsenic as As	By AAS Method APHA 23 RD Ed,2017: 3114 B	mg/l	0.2	BDL	BDL
10	Lead as Pb(max)	By AAS Method APHA 23 RD Ed,2017 3111 B	mg/l	0.1	BDL	BDL
11	Cadmium as Cd (max)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.01	BDL	BDL
12	Hexa Chromium as Cr +6	Diphenyl Carbazide Method APHA 23 RD Ed,2017: 3500Cr B	mg/l	0.05	BDL	BDL
13	Copper as Cu (max)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	1.5	BDL	BDL
14	Zinc as Zn(max)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	15	BDL	BDL
15	Selenium as Se (max)	By AAS Method APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.05	BDL	BDL
16	Cyanide as CN (max)	Distillation followed by Spectophotometric Method APHA 23 RD Ed,2017: 4500 CN C,D	mg/l	0.05	ND	ND
17	Fluoride as F (max)	Distillation followed by Spectophotometric Method APHA 23 RD Ed,2017: 4500F C	mg/l	1.5	0.10	0.14
18	Sulphates (SO ₄) (max)	Turbidimetric Method APHA 23 RD Ed,2017: 4500 SO4 ²⁻ E	mg/l	400	0.72	0.91

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

(An Enviro Engineering Consulting Cell)


Date: 10.10.2020 Ref: Envlab/20/R-4637

19	Phenolic Compounds as C ₆ H ₅ OH (max)	Chloroform Extraction By Colorimetric Method APHA 23 RD Ed,2017: 5530 B,D	mg/l	0.005	BDL	BDL
20	Iron as Fe (max)	By AAS Method APHA 23 RD Ed,2017: 3500Fe, B	mg/l	0.5	0.41	0.051
21	Nitrate as NO ₃ , (max)	By UV-Screen Method APHA 23 RD Ed,2017: 4500 NO ₃ E	mg/l	50	1.6	1.3
22	Anionic Detergents (max)	Anionic Surfactants as MBAS APHA 23 RD Ed,2017: 5540 C	mg/l	1.0	ND	ND
23	Total Coli form	By Multiple Tube Fermentation Technique APHA 23 RD Ed,2017: 9221 B	MPN/ 100 ml	5000	1200.0	1800.0

(An Enviro Engineering Consulting Cell)

ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Ref : Envlab/20/R-4634 Date : 10.10.2020

DUST FALL ANALYSIS REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES , KALIAPANI, JAJPUR

3. Sampling Location : DF1- Near Roof Top of Office Building

4. Date of Sampling : 22.09.2020

5. Sample Collected by : VCSPL Representative in presence of Client's Representative

		Unit	Analysis Result
SL.No.	Parameters	(mg of deposit per square meter per day)	DF1
1	Mercury as Hg	mg/m ² d	ND
2	Nickel as Ni	mg/m ² d	ND
3	Cobalt as CO	mg/m ² d	ND
4	Arsenic as As	mg/m ² d	ND

<u>A</u> ı	nnexure-6
SOIL QUALITY ANALYSIS REPORT	nnexure-6

(An Enviro Engineering Consulting Cell)

ISO 14001:2015 ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Ref : Envlab/20/R-4630 Date : 10.10.2020

SOIL QUALITY ANALYSIS REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : S1: East Side Quarry

S2: West Side QuarryS3: North Side QuarryS4: South Side Quarry

4. Date of Sampling : 23.09.2020

5. Date of Analysis : 24.09.2020 to 25.09.2020

6. Sample Collected by : VCSPL Representative in presence of Client's Representative

					Analysis Result			
Sl. No.	Name of the Parameters	Unit	Testing Method	S1	S2	S3	S4	
1	Mercury as Hg	mg/kg	EPA 3050B, 7000B Rev 02, 1996	ND	ND	ND	ND	
2	Nickel as Ni	mg/kg	EPA 3050B, 7000B Rev 02, 1996	ND	ND	ND	ND	
3	Cobalt as CO	mg/kg	EPA 3050B, 7000B Rev 02, 1996	ND	ND	ND	ND	
4	Arsenic as As	mg/kg	EPA 3050B, 7000B Rev 02, 1996	ND	ND	ND	ND	

BDL Value : Ni <50 mg/kg, Co< 10 mg/kg, As < 10 mg/kg, Hg <10 mg/kg

Puja Mohanly

Environmental Monitoring Report

Annexure-7
FUGITIVE EMISSION MONITORING REPORT

(An Enviro Engineering Consulting Cell)

ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Ref : Envlab/20/R-4633 Date : 10.10.2020

FUGITIVE EMISSION ANALYSIS REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Sampling Location : **F1-** Near Mines Ore Plot Area

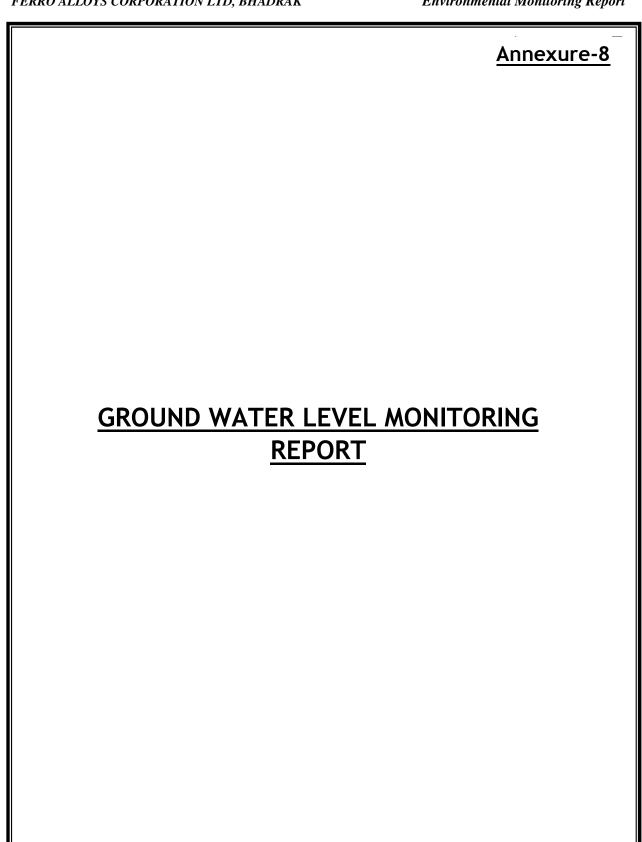
F2- Near COB Plant Area

F3- Near Mines Loading & Unloading Point

4. Method of Sampling : IS 5182(P-5) 1975 RA 2014

5. Date of Sampling : 24.09.20206. Date of Analysis : 25.09.2020

7. Sample Collected by : VCSPL Representative in presence of Client's Representative


SL.	Test Devemeters	Test Parameters Test Method U	TIm:4	Analysis Result		
No.	Test Parameters	rest Method	Unit	F1	F2	F3
1	Suspended Particulate Matter as SPM	IS 5182 (P-4)1999 RA 2014 Gravimetric Method	μg/m³	124.0	228.0	178.0

(An Enviro Engineering Consulting Cell)

Ref : Envlab/20/R-4632 Date : 10.10.2020

GROUND WATER LEVEL REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Date of Sampling : 23.09.2020

4. Sample Collected by : VCSPL Representative in presence of Client's Representative

SL.No.	Locations	Unit	Analysis Result
1	Bore well Near Workshop of Mines	mt/bgl	11.2
2	Bore well Near Main Gate of OCM	mt/bgl	10.4
3	Open Well Near Ostia Village	mt/bgl	3.4
4	Open Well Near Ostapal Village	mt/bgl	5.1
5	Tube well inside Shiva Temple of the Village Gurujanga	mt/bgl	10.4
6	Tube well outside Shiva Temple of the Village Gurujanga	mt/bgl	10.8
7	Eastern side of the Quarry (PZ-1)	mt/bgl	4.4
8	Southern side of the Quarry (PZ-2)	mt/bgl	3.8
9	Watstern side of the Quarry (PZ-3)	mt/bgl	4.2

Annexure-9	
NOISE QUALITY MONITORING REPORT	
NOISE QUALITY MONITORING REPORT	

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001:2015 ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Ref: Envlab/20/R-4631 Date: 10.10.2020

NOISE QUALITY ANALYSIS REPORT- SEPTEMBER 2020

1. Name of Client : M/s FERRO ALLOYS CORPORATION LIMITED, BHADRAK

2. Name of the Project : OSTAPAL CHROMITE MINES, KALIAPANI, JAJPUR

3. Date of Sampling : 23.09.2020

4. Sample Collected by : VCSPL Representative in presence of Client's Representative

Location			Result in dB (A)		
ID	Location		Day Time	Night Time	
110			(6.00 am to 10.00pm)	(10.00pm to 6.00 am)	
N1	Open Cast Quarry	Ambient	72.0	68.0	
N2	COB Plant		68.0	62.0	
N3	Mines Loading & Unloading		73.6	70.0	

AMBIENT NOISE LEVEL STANDARD

	Limit in dB (A)			
Category Area/Zone	Day Time	Night Time		
	(6.00 am to 10.00pm)	(10.00pm to 6.00 am)		
Industrial Area	75	70		
Residential Area	55	45		
Commercial Area	65	55		
Silence Zone	50	40		

(An Enviro Engineering Consulting Cell)

Plot No.-M22&M23, Chandaka Industrial Estate, Patia , Bhubaneswar-751024 Tel.: 0674-3511721

E-mail: visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vcspl.org

Committed For Better Environment

Regional Director

File No: - 21-4/1456/OR/MIN/2017 - 1739

NOC No: - CGWA/NOC/MIN/ORIG/2018/3957

ANNEXURB - 10

भारत सरकार केन्द्रीय भूमि जल प्राधिकरण जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

Government of India Central Ground Water Authority Ministry of Water Resources, River Development & Ganga Rejuvenation

Date:- 28 AUG 2018

M/s Facor Ltd. Ostapal Chromite Mines Village Gurujanga, Block Sukinda, District Jajapur, Odisha - 755028

Sub: - NOC for ground water withdrawal to M/s Facor Ltd. in respect of their existing "Ostapal Chromite Mines" located at Village Gurujanga, Block Sukinda, District Jajapur, Odisha - reg.

Refer to your application for grant of NOC for ground water withdrawal dated 28/08/2017. Based on recommendations of Regional Director, Central Ground Water Board, Central Ground Water Board, South Eastern Region, Bhubaneswar vide his letter dated 17/06/2018 and further deliberations on the subject, the NOC of Central Ground Water Authority for ground water withdrawal is hereby accorded to M/s Facor Ltd. in respect of their existing "Ostapal Chromite Mines" located at Village Gurujanga, Block Sukinda, District Jajapur, Odisha. The NOC is valid from 02/08/2018 to 01/08/2020 and is subject to the following conditions:-

1. The firm may abstract 100 cu.m/day of ground water (and not exceeding 36,500 cu.m/year) through two (2) existing bore wells and 3;300 cu.m/day (not exceeding 12,04,500 cu.m/year) through dewatering mine seepage through two (2) existing mine pits on account of mining intersecting the water table. The total withdrawal should not exceed 3,400 cu.m/day (not exceeding 12,41,000 cu.m/year). No additional dewatering and ground water abstraction structure shall be constructed for this purpose without prior approval of the CGWA. Any unexpected variation in inflow of ground water into the mine pit should be reported to the concerned Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar.

Both the wells as well as dewatering structures shall be fitted with digital water meters by the firm at its own cost and monitoring of monthly ground water abstraction data of each ground water abstraction structures shall be recorded in a log book. Compliance to this condition shall be reported within one month from the date of issue of this letter.

3. M/s Facor Ltd, Ostapal Chromite Mines, in consultation with the Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar shall implement ground water recharge measures atleast to the tune of 23,630 cu.m/year as proposed, for augmenting the ground water resources of the areas where post monsoon water level is more than 5 meter below ground level. Firm shall report the compliance within six months from the date of issuance of this letter. Firm shall also undertake periodic maintenance of recharge structures at its own cost.

4. The photographs of the recharge structures after completion of construction of the same shall be furnished immediately to the Regional Director, Central Ground Water

18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743 Website: www.cgwa.noc.gov.in

खबळ सुरक्षित जल - सुन्दर खुशहाल कल

CONSERVE WATER - SAVE LIFE

Board, South Eastern Region, Bhubaneswar for verification under intimation to this office.

5. The firm, at its own cost, shall construct four (4) observation wells (piezometers) at suitable locations and install digital water level recorders along the periphery of the mine for monthly ground water level monitoring. Further, the firm shall execute ground water level monitoring four (4) times a year (January, May, August and November) in core and buffer zone by establishing sufficient number of key wells in consultation with the Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar. Firm shall install telemetry system on one of the piezometer and share the user ID and password of the telemetry system with the Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar.

6. The ground water quality shall be monitored once in a year (during pre monsoon period)

7. The monitoring data in respect of S. No. 2, 5 & 6 shall be submitted to the Regional Director, Central Ground Water Board, South Eastern Region, Bhubaneswar on regular basis at least once in a year.

8. The firm shall ensure proper recycling and reuse of waste water after adequate treatment.

9. Action taken report in respect of S. No. 1 to 8 shall be submitted to CGWA within one year period.

10. The NOC is liable to be cancelled in case of non-compliance of any of the conditions as mentioned in S. No. 1 to 9.

11. This NOC is subject to prevailing Central/State Government rules/laws or Court orders related to construction of tubewell/ground water withdrawal/construction of recharge or conservation structure/discharge of effluents or any such matter as applicable.

12. The firm shall report self compliance online in the website (www.cqwa-noc.gov.in) within one year from the date of issue of this NOC.

13. This NOC does not absolve the applicant / proponent of this obligation / requirement to obtain other statutory and administrative clearances from other statutory and administrative authorities.

14. The NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on merits and be taking decisions independently of the NOC.

Regional Director

Copy to:

CONTRACTOR OF THE PARTY OF THE

- 1. The Member Secretary, Odisha Pollution Control Board, Paribesh Bhawan, A/118, Nilakantha Nagar, Unit- VIII, Bhubaneswar- 751012, Odisha with a request to ensure that the conditions mentioned in the NOC are complied by the firm in consultation with the District Collector & Magistrate, District Jajapur, Odisha.
- The District Collector & Magistrate, District Jajapur, Odisha for necessary action.
 The Regional Director. Central Ground Water Board, South Eastern Region, Bhubaneswar. This has reference to your recommendation dated 17/06/2018.

4. Guard File 2018-19.

Regional Director

The Astronomy Submitted Successfully

https://mail.google.com/mail/u/0?ik=d009e83427&view=pt&sear...

FACOR OSTAPAL <facor.ostapal@gmail.com>

Your Renewal Application Submitted Successfully

no-reply-cgwa@gov.in <no-reply-cgwa@gov.in> To: facor ostapal@gmail.com

Fri, Jun 12, 2020 at 10 51 AM

Dear OSTAPALCHROMITEMINES,

Your Application Submitted Successfully. Your Application Detail are: Application Number: 21-4/1456/OR/MIN/2017 Applied for Renewal of NOC Number: CGWA/NOC/MIN/ORIG/2018/3957 Applied For Renewal:1st Name of Industry: OSTAPAL CHROMITE MINES Prease note your application number for future reference.

This is system generated mail. Please do not reply.

CALENDAR PLAN INCLUDING EXCAVATON, QUANTUM OF MINERAL CHROMITE AND WASTE GENERATED DURING THE PERIOD 2020 – 21 (APRIL, 2020 TO SEPTEMBER, 2020) OF OSTAPAL CHROMITE MINES

SL. NO.	MATERIALS	CALENDAR PLAN PER ANNUM (2020-21)	QUANTITY GENERATED DURING THE PERIOD FROM (April, 2020 to September, 2020)
01.	CHROME ORE ROM (MT)	97676	32762
02.	WASTE OVER BURDEN (M³)	260970	50680

Mines Manages

Mines Mines

M/s FACOR LTB

PIN- 755047

DETAILS OF EXPENDITURE INCURRED ON ENVIRONMENTAL PROTECTION MEASURES DURING THE YEAR 2020-21 AND PROPOSED BUDGETED AMOUNT FOR THE YEAR 2020-21 FOR OSTAPAL CHROMITE MINES

SI. No.	ITEM	Proposed budgeted amount
		for the year 2020-21 (In Rs.)
1.	AFFORESTATION	
a)	Seedlings @ Rs. 70/- each	4,65,800.00
b)	Fertilizer/Insecticide/Cow dung @ Rs. 20	1,66,375.00
c)	Digging of Pits/Planting, Labour cost @ Rs. 40	2,66,200.00
d)	Post Plantation care @ Rs. 120/- (Watering, Weeding, Basin Making etc)	7,98,600.00
e)	Supervising	4,82,230.00
	Sub-Total	21,79,205.00
2.	WATER MANAGEMENT & TREATMENT	
a)	ETP Operation & Maintenance (including costs of chemical & Manpower)	23,87,000.00
b)	Power Consumption	7,07,447.00
c)	Sludge disposal	79,430.00
d)	Water sample analysis	76,000.00
	Sub-Total	32,49,877.00
3.	DUST SUPRESSION & AIR MONITORING	
a)	Water spraying at dust generating points by water tanker	12,21,200.00
b)	Air monitoring charges	2,53,000.00
c)	Noise level measurement	1,980.00
	Sub-Total	14,76,200.00
	Grand Total	69,05,282.00

Compal Chromics Missos Missos Market Missos Missos